
CS 182

Preston Fu

Fall 2023

These are course notes for the Fall 2023 rendition of CS 182, Deep Neural Networks, by Prof.
Anant Sahai, i.e. a summary of the lecture videos. They are a strict subset, covering maybe half
the material (that’s pretty generous).

Contents

2 Machine Learning Review (08/28) 3
What is Machine Learning? . 3
Gradient Descent . 3
Neural Networks . 3

3 Gradient Descent, Regularization, SGD (08/30) 4
Least Squares . 4
SVD Perspective . 4
Gradient Descent . 5

4 Gradient Descent, Regularization, SGD (09/06) 5
Initialization . 5
Optimization . 6

5 Adam, SGD (09/11) 6
Adam . 6
SGD . 7

6 ConvNets, Normalization (09/13) 7

7 Normalization Layers, ResNets (09/18) 9
Normalization . 9
ResNets . 9

8 ResNets, Fully Convolutional Nets (09/20) 10

9 Dropout, SGD (09/25) 12
Dropout . 12
SGD . 12

10 Graph Neural Networks (09/27) 13

11 GNN (10/02) 14

12 GNN (10/04) 15

14 RNN, Self-supervision, Autoencoders (10/18) 15
RNNs . 15

1

CS 182 Preston Fu

Self-supervision . 16

15 Attention and Transformers (10/25) 16
Encoder-Decoder Approach . 17
Attention . 17

16 Transformers (10/30) 18

17 Transformers (again) (11/01) 19
Transformers . 19
Fine-tuning . 19
Self-supervision and pre-training . 20

18 Self-supervised training, Prompting, ViT (11/06) 20
Self-supervised training . 20
Prompting . 21
ViT . 21

19 Language models (11/08) 21
BERT . 21
Tokenization . 22
Beam search . 22
Parameter-efficient finetuning . 22

20 Parameter-efficient finetuning and Meta-learning (11/13) 22
Parameter-efficient finetuning . 22
Meta-learning . 24

21 Meta-learning, Generative Models (11/15) 24
Meta-learning . 24
Generative models . 25

22 VAE (11/20) 25

22 VAE (11/22) 26

24 GAN & Diffusion Models (11/27) 27
GAN . 27
Diffusion Models . 27

References 28

2

CS 182 Preston Fu

2 Machine Learning Review (08/28)

The corresponding video is here.

What is Machine Learning?

Concept 2.1. The ML setup is as follows: we are given some training data D = {(xi, yi)}, a
model fθ(·), and loss ℓ(ŷ, y). Our goal is to achieve good performance in the real world.

For example, one possible way of trying this is empirical risk minimization,

θ̂ = arg min
θ

1
n

n

∑
i=1

ℓtrain(yi, fθ(xi)).

Unfortunately, this suffers because this bases our performance on our data rather than the true ob-
jective. Instead, we can frame our optimization problem as follows: make an assumption about the
underlying distribution of the data, and call it P. Then our goal is to compute arg minθ EX,Y∼P[ℓ(Y, fθ(X))].

We (briefly) discuss several complications of this setup and the typical solution:

1. We have no access to P. So we partition D = Dtrain ⊔Dtest and use the test error as a faithful
representation of the real world.

2. Our loss function ℓtrue (e.g. Hamming loss for binary classification) might be incompatible
with our optimizer. So we use a surrogate loss ℓtrain that satisfies the conditions of the
optimizer and evaluate the true loss with ℓtrue.

3. We might get crazy values for θ̂ or bad overfitting. Adding an explicit regularizer R(θ) (e.g.
λ ∥θ∥2) or changing the model handles this.

4. A hyperparameter can be considered something that, if handled directly by the optimizer,
will go crazy. For example, using λ as a parameter in ridge regularization will probably set
it to −∞. Often there are dozens of hyperparameters, so we blindly look at others’ because
it is intractable to grid search over more than 4 or 5 of them.

Gradient Descent

Recall the Taylor expansion Ltrain(θt + ∆θ) = Ltrain(θt) +
∂
∂θ Ltrain|θt ∆θ + o(∥∆θ∥2). We want to

move in such a way that maximizes the change in the loss, i.e. move in the negative direction of
the gradient. So we update

θt+1 = θt − η∇θ Ltrain(θ).

An example of Ltrain(θ) might be 1
n ∑n

i=1 ℓtrain(yi, fθ(xi)) + R(θ). But usually n is quite large, and
computing this summation is time-consuming. So we instead use stochastic gradient descent,
using a sample of size nbatch ≪ n.

Neural Networks

We provide a bare-bones example of a “universal function approximator.” For our baseline,
observe that you can approximate any function linearly, i.e. you can express it as the sum of

3

https://www.youtube.com/watch?v=dUKqbASk56k&list=PLnocShPlK-Fs_62EXCDykgtQFbHGLMT7U&index=2&ab_channel=IESGDepartmental

CS 182 Preston Fu

some max(0, wx + b) for some w, b ∈ R. So in general, you can optimize W and b so that
ReLU(Wx + b) ≈ y.

3 Gradient Descent, Regularization, SGD (08/30)

The corresponding video is here.

Least Squares

Recall that the problem is computing arg minw ∥Xw− y∥2. The OLS solution is (X⊤X)−1X⊤y, and
the ridge regression solution is (X⊤X + λI)−1X⊤y. The idea behind ridge is that the inverted term
is positive definite, and thus more numerically stable.

Suppose that for some reason we want to run gradient descent. Then the update step for OLS is

wt+1 = wt + η2X⊤(y− Xwt),

and that for ridge regression is

wt+1 = (1− 2ηλ)wt + η2X⊤(y− Xwt).

The latter is “weight decay,” which draws w toward zero.

Warning 3.1. It is a common mistake to apply both an explicit regularization and enabling
weight decay. They are redundant and will result in more of a weight decay effect than you
might’ve intended.

SVD Perspective

Let X = UΣV⊤, where U ∈ n× n, Σ ∈ n× d, and V ∈ d× d. Changing coordinates, let w̃ = V⊤w
and ỹ = U⊤y, so that Σw̃ ≈ ỹ. In either the wide or tall case, one can do some math to compute

w̃i =

{
1
σi

ỹi i ≤ min(n, d)

0 else.

In the ridge regression case, we find

w̃i =

σi

σ2
i +λ

ỹi i ≤ min(n, d)

0 else.

Thus, λ ≪ σi makes w̃i ≈ 1
σi

yi, i.e. the usual solution from OLS. If instead λ ≫ σi, then w̃i ≈ σi
λ yi,

preventing the case of blowup for small singular values.

4

https://www.youtube.com/watch?v=lgbHgKUNYOU&list=PLnocShPlK-Fs_62EXCDykgtQFbHGLMT7U&index=3&ab_channel=IESGDepartmental

CS 182 Preston Fu

Gradient Descent

We have
wt = wt−1 + 2ηΣ⊤(ỹ− Σw̃t−1).

Coordinate-wise, the update is

wt[i] = wt−1[i] + 2ησi(ỹ[i]− σiw̃t−1[i]).

The interpretation is that gradient descent fits first in the largest σi direction. For small σi (that
give large solutions), we will converge to something very large, but very slowly.

4 Gradient Descent, Regularization, SGD (09/06)

The corresponding video is here.

Initialization

Question 4.1. Suppose you have a two-layer MLP with ReLU activations. What happens when
you initialize all weights to zero?

Answer. All the gradients are zero. This only happens when you have a neural net with depth
> 1.

As a result, we want a principled way of initializing them. (Treating them as hyperparameter is
too expensive for deep learning.) For some tasks, someone else might’ve already found decent
weights for a similar problem, and you can use them as a starting point. Otherwise, suppose they
are distributed as iid Gaussians. We still have to choose the corresponding mean and variance.
How can we do so?

Recall that in standard machine learning, we usually normalize our inputs to mean 0, variance 1,
so that large singular values are representative of important features, rather than a misnomer of
the feature simply containing large values.

In a similar fashion, we may want to initialize weights such that N (0, 1) inputs result in N (0, 1)
outputs. Xavier initialization does this, distributing weights according to N (0, indegree−1).

Remark. Xavier initialization was originally justified with a similar Bayesian justification as sig-
moid. However, sigmoid, arctan, etc. suffer from saturation, i.e. your derivatives go to zero. Gen-
erally, people like to use ReLUs for this reason.

However, this also doesn’t work well sometimes; recall that the elbow is at −b/w. But since w
has a high probability density at 0, the tails are heavy. If the elbow is too high, it’s possible for the
gradients to be stuck at zero. (We call this a “dead ReLU.”) In practice, as you train more, you’ll
end up with more dead ReLUs.

Note that in the real world, half your (normalized) data will be negative, and thus the correspond-
ing ReLUs will die instantly. We fix this with He initialization, i.e. taking σ2 = 2indegree−1.

5

https://www.youtube.com/watch?v=BIRfTdq2ZJE&list=PLnocShPlK-Fs_62EXCDykgtQFbHGLMT7U&index=4&ab_channel=IESGDepartmental

CS 182 Preston Fu

Figure 1: What the fuck is this man doing?

Optimization

Last time, we considered gradient descent from an SVD perspective. The update rule looks like

w̃t+1[i] = (1− ησi)w̃t[i] + [something].

In particular, we want convergence to occur at a consistent rate, so we want to choose η such that
|1− ησmax| = |1− ησmin|. We’ll see this again on the homework.

Suppose we want to speed up optimization. The idea is to reduce oscillation by applying a low-
pass filter. Sahai represents this in a scuffed analogy in Figure 1. The answer is momentum.

The idea, then, is to add a capacitor, or add “memory/state” to learning dynamics. Our update
looks like

at+1 = (1− β)at + β∇ℓ(wt)

wt+1 = wt − ηat+1

We get more details when we convert to SVD coordinates in homework.

5 Adam, SGD (09/11)

Recall that GD with momentum is given as follows:

at+1 = (1− β)at + β∇L(wt)

wt+1 = w− ηat+1.

Alternatively, you can use “Nesterov” momentum, with update at+1 = (1 − β)at + β∇L(wt −
η(1− β)at. (Take the gradient where you know you’ll end up.) In practice, this doesn’t make too
much a difference in deep learning.

Adam

Observe that GD with momentum doesn’t change behavior if we rotate coordinates or translate;
we are still limited in the directions of small gradients.

6

CS 182 Preston Fu

The idea is to pretend that the coordinates are independent, and as such you can use an adaptive
learning rate for each coordinate. Conceptually, we want small gradients to have larger learning
rates.

vk+1 = (1− β′)vk + β′∇w

...(

∂L
∂wi

)2

...

ak+1 = (1− β)ak + β∇L(wk)

wk+1[i] = wk[i]− η
ak+1[i]√

vk+1[i] + ε

SGD

Instead of L(w) = 1
n ∑n

i=1 ℓi(w), we use a minibatch of size k where we randomly sample from
all n. The idea is that the loss is the same in expectation, and likewise for its gradient. In practice,
you just randomly shuffle the data and take batches in a loop.

Example 5.1. Suppose we have an invertible X and want to solve for w with Xw = 0. Let the
rows of X be x⊤i , and let λmax ≥ λmin ≥ 0 be the eigenvalues of XTX. Suppose you have batch size
1, so our update looks like

wt+1 = wt − η · 2(xix⊤i)wt

where i ∼ U {1, . . . , n}.

6 ConvNets, Normalization (09/13)

Suppose you are given an image and want to perform some classification task (is it a cat, dog,
airplane, frog)? If you have 100× 100× 3 images, then we want to pick an architecture we think
will be good at expressing specific patterns; building an MLP with layer size 30000 is massive and
will learn lots of noise. The key ideas in expressivity are as follows:

• Respect locality: many interesting patterns we want to learn are local, so we should use a
convolutional structure with filters.

• Respects symmetries: can use weight sharing and data augmentation.

• Support hierarchical structure: understanding depth, multi-resolution perspective.

And the key ideas in stabilization in implementation:

• Normalizations

• Residual/skip connections

• Dropout

Next, we motivate several important aspects of ConvNets:

• Weight sharing: we apply the same filter at different patches in the image. We think of this
as weight sharing instead of just one filter because of the following framework: you have a
filter that you slide around; different patches contribute to the learned filter additively.

7

CS 182 Preston Fu

Figure 2: An overview of different augmentation approaches [2]. Cutout emphasizes using all of
the image as clues, not just the few that you need. Mixup provides an image of 90%
bird and 10% turtle and expects the same proportions as its output (don’t throw away
unlikely outcomes). CutMix is a combination. PixMix applies some terrible filters, remi-
niscent of psychedelics.

• Channels: if you have one filter, your output will have depth 1. Maybe you want to learn
multiple filters, in which case your depth will just be that number. Note that the intermediate
layers aren’t images, but they have the same topology as images.

Question. At a given layer, how many filters do we want to use?

• Nonlinearities: For a long time, it was common to apply a nonlinearity after every convo-
lution. Now, it isn’t so common to do so anymore.

• Padding: You might want the image to stay the same size (same padding). There are a
couple ways of doing this (padding with zero, mirror, etc).

• Pooling: Suppose you have some 100× 100× 3 image, and you want to convert it to 1× 1× 4
scores for cat, dog, airplane, frog. It is natural to want to downsample it over several layers.
Stride is one way, throwing away some of your convolutions by not computing them at all.
More generally, we can also do things like average and max pooling.

– With average pooling, everything has equal contribution to the gradient. With max
pooling, only one pixel contributing, i.e. the gradient is “routed” to the max.

– Each pixel has a “receptive field,” i.e. the pixels that contributed to it in the previous
layer. (For example, the receptive field of any output pixel in a fully-connected layer is
the entire input.) As you go back through the layers, the receptive field expands. With
pooling, this expansion happens more quickly.

• Eventually, you want to get to 1× 1. So towards the end, people add some fully-connected
layer(s).

• This works fine for translation invariance. But it doesn’t work for small rotations. In prac-
tice, you apply data augmentations (contrast, posterize, shear, rotate, translate), so that the
network never sees the same image twice.

Even better, you can give robustness with augmentation. See Figure 2. The key takeaway is
that a lot of creativity and domain-specific knowledge is required to regularize effectively.

8

CS 182 Preston Fu

7 Normalization Layers, ResNets (09/18)

Normalization

Recall that we like to normalize each feature in our training data because neural nets like to move
in the direction of big things (specifically, large singular values). So we want to make our data
zero mean and variance one so that we can avoid “accidental bigness.”

Furthermore, we like to initialize weights with Xavier/He so that we can avoid the same problem.

However, these don’t provide guarantees during training; left to their own devices, neural nets
often produce exploding or vanishing gradients. The most common intervention is normalization
layers, which normalize the outputs of each layer.

This raises two question:

1. What should we normalize to?

Answer 1: Use µ = 0, σ = 1.
Answer 2: Make µ and σ learnable.

2. What do you average together? (In the case of ConvNets, you can visualize the output
as HW × C × N, where (H, W) are the image size, C is the number of channels, and N
is the number of mini-batches, and we are interested in determining which blocks should
participate in normalization.)

Answer 1: Average over all batches for a particular pixel and channel.

Answer 2: Answer 1 doesn’t work well because your batch estimate might be bad (e.g. if
your batch size is 16, there might be too much variance). However, we still want to average
over things we think might be similar.

So we introduce batch normalization: we average over pixels and batches for each channel.
Observe that this is SGD-friendly and backprop-friendly, but backprop is nontrivial because
now the gradients depend on the rest of the pixels. (We’ll see this in homework, probably.)
It’s a bit tricky because you have a different mean and variance for each batch, so in im-
plementation you might remember the normalization constants for each batch and take the
average at the end. As a result, passing in the same input at train and test time will result in
different losses, but we hope that they aren’t too far off.

3. Answer 3: This last part is a bit troublesome. Moreover, different channels might represent
different components of the same “signal” (i.e. gradient direction), and normalizing channels
separately might distort those signals.

Layer normalization averages over pixels and channels for each batch.

ResNets

In practice, however, initialization, normalization, and ConvNet structures were insufficient in
training very deep neural nets. These work well at preventing gradients from becoming too big,
but aren’t great at preventing them from getting too small. One interpretation to neural nets
getting stuck is that reaching a local minimum often makes the last layer unstable, and that uncer-
tainty gets propagated back into the first layer as garbage. So we want a way of allowing upstream
gradients to be propagated directly downstream, such that they don’t have to be passed through

9

CS 182 Preston Fu

Figure 3: ResNet architecture

Figure 4: ResNets achieve better performance for deeper neural nets.

so many activations.

Question 7.1. How do we decide which skip (aka residual) connections we want? For instance,
adding (n

2) connections will make gradients add exponentially, and they’ll explode.

Answer. Add a connection between the input to each layer and the input to the next one. This
way, it’s possible to for the gradient to pass from the end to the start without passing through all
the intermediate layers. See Figure 3.

Functionally, the optimal performance of a ResNet isn’t any better than that of your old neural
net: adding the input can be achieved by carefully setting weights. It succeeds, however, because
setting those weights takes a lot of time and tuning, and it can be much better to use this architec-
ture.

Question 7.2. How do you downsample?

Answer. Apply a projection.

8 ResNets, Fully Convolutional Nets (09/20)

This lecture contained a bunch of separate ideas, so the notes are also jumbled.

Remark. Supposedly, there is a way to consider a ResNet as an ODE. It seems weird to add the
input of one layer to the output of the next because they don’t seem “compatible” at first glance.
The idea is that when you run gradients through, the units “make sense” because of the update
x(t + ∆) = x(t) + ∆ f (x(t), t). If you write it as an ODE and it has some form, there may be some
way to implement backprop without needing to store gradients of all intermediate activations.

10

CS 182 Preston Fu

Figure 5: ConvNeXt aggregates some methods from the previous several years: residual connec-
tions, cosine learning rate schedule, AdamW, and aggressive data augmentation

Note. GeLU is given by xΦ(x), where Φ denotes the Gaussian cdf. It is inspired by a theoretical
variant where we randomly draw from a Gaussian and only pass x through if it is nonnegative.
Its gradient is non-convex and non-monotonic.

Classification In the pre-ResNet days, people downsampled images until they hit some size,
then flattened them, then ran them through a fully-connected layer and finally a linear layer. Later,
people introduced global average pooling, which reduces everything to a 1× 1.

Segmentation Suppose you want to associate each pixel in an image with a class. One idea is
to use a convnet where each layer has the same size; this has the issue that some classes exist at
different scales. One fix is to apply convolutional layers until you hit low-res (never 1× 1, but
pretty small) and high channels, then up-sample at the end.

Question 8.1. How do you upsample?

Answer. In the past, we used stride as a means to downsample. We can use the inverse process
(we can regard it as fractional stride) as a means of upsampling.

Max un-pooling requires that we remember which elements were the max and use those same
positions.

In particular, we can pair downsampling and upsampling layers, where we concatenate activa-
tions from conv layers to their corresponding upsampling layers. This is called a U-net; see Fig-
ure 6. Generally, they are good for anything producing images, and as such are good for segmen-
tation and generation in particular.

11

CS 182 Preston Fu

Figure 6: U-net

9 Dropout, SGD (09/25)

The corresponding video is here.

Dropout

Previously, we saw the analogy

input : deeper layers :: input standardization : batch and layer normalization.

In this analogy, what does data augmentation correspond to? Its purpose (e.g. with rotations,
reflections) is that the output will not become overly dependent on any particular activation.
Dropout, i.e. randomly zeroing some activations, has this effect: we care about the image as a
whole, so getting rid of some things shouldn’t cause any problems.

Suppose that every activation has iid probability p of being zeroed. In expectation, its value is
multiplied by 1− p. So we account for this at test time: multiply its output by 1− p.

SGD

Suppose you want to solve solve Wx = 0 (W is the data with rows w⊤i , and x are the parameters).
The SGD update is xt+1 = xt − 2ηwI(w⊤I xt), where I is sampled uniformly at random from [n].

Consider L(x) = 1
n x⊤W⊤Wx = EI [LI(x)], where LI(x) = (w⊤I x)2 = x⊤(wIw⊤I)x. Then:

12

https://www.youtube.com/watch?v=85C2-N_q26I&list=PLnocShPlK-Fs_62EXCDykgtQFbHGLMT7U&index=9&ab_channel=IESGDepartmental

CS 182 Preston Fu

Claim 9.1. E[L(xt+1) | xt] ≤ (1− ρ)L(xt) for some constant ρ > 0.

Proof.

L(xt+1) = L(xt + (xt+1 − xt))

= L(xt) +
2
n

x⊤t W⊤W(xt+1 − xt) +
1
n
(xt+1 − xt)

⊤W⊤W(xt+1 − xt).

Let’s bound each term separately:

E

[
2
n

x⊤t W⊤W(xt+1 − xt)

∣∣∣∣ xt

]
= − 2

n
x⊤t W⊤W2ηEI [wIw⊤I]xt

= − 4
n2 ηx⊤t W⊤WW⊤Wxt

≤ − 4
n2 ηx⊤t W⊤σmin(WW⊤)Wxt

≤ − 4
n

ηλmin(WW⊤)L(xt), (♣)

and

E

[
1
n
(xt+1 − xt)

⊤W⊤W(xt+1 − xt)

∣∣∣∣ xt

]
= EI

[
1
n

4η2x⊤t wIw⊤I W⊤WwIw⊤I xt

∣∣∣∣ xt

]
≤ 1

n
4η2λmax(W⊤W)EI

[
x⊤t wIw⊤I wIw⊤I xt

∣∣∣ xt

]
.

Letting β2 = maxi ∥wi∥2, we have

· · · ≤ 1
n

4η2β2λmax(W⊤W)EI

[
x⊤t wIw⊤I xt

∣∣∣ xt

]
= 4η2β2λmax(W⊤W)L(xt) (♠)

Since β, λmin, and λmax are constants we can compute ahead of time, choosing sufficiently small η

will make |♣| > |♠|, which suffices. ■

10 Graph Neural Networks (09/27)

The corresponding video is here.

Question 10.1. Can we generalize principles from CNNs for images to general graphs?

The idea behind CNNs is that they exploit local structures. We want to do the same thing using
undirected graphs with no edge labels.

In images, we had image-level tasks (e.g. classification) and pixel-level tasks (e.g. segmentation).
Likewise, we’ll have graph-level and node-level tasks.

First, let’s give an overview of the big CNN ideas:

• Convolutions (local processing):

13

https://www.youtube.com/watch?v=nxSH8TUDZMM&list=PLnocShPlK-Fs_62EXCDykgtQFbHGLMT7U&index=10&ab_channel=IESGDepartmental

CS 182 Preston Fu

– Weight-sharing (translation invariance) and filter-banks.

– Depth of network as “seeing” the entire image: growth of the receptive field.

• Residual connections

• Normalization layers

• Downsampling

• Data augmentation (problem-specific)

Next, let’s see their analogs:

• Convolutions work in images because there is an ordering: each entry in the filter is paired
with a specific pixel as we move the filter across the image. This is not the case for graphs:
each vertex is only associated with an (unordered) set of vertices, which can have different
size for different vertices. As a result, most of the time, we’ll learn three functions:

– f , which accepts a vertex and an aggregate of its neighbors as input

– s, representing a similarity score between a vertex and a particular neighbor (a scalar)

– g, a function of a particular neighbor (possibly a vector).

Overall, it’ll look something like:

fW1

(
v, ∑

u neighboring v
sW2(v, u)gW3(u)

)
,

where ∑ is a placeholder aggregator (might be max, average for example).

• Residual connections are built in because the graph is fixed.

• Normalization: Recall our 3D box visualization. Batch norm considered a fixed channel and
normalized over pixels and images. Layer norm considered a fixed image and normalized
over pixels and channels. The naive approach is just to replace “pixels” with “nodes.” This
works in the case of small graphs. Otherwise, you don’t have enough memory. In the case
of large graphs, you can deal with it in a problem-specific way.

• Pooling: One approach is to compute a clustering of the graph and downsampling to clus-
ters. Another is to do this in a content-specific way, for example learning a similarity measure
to simulate clustering.

• Data augmentation is problem-dependent (built in).

Remark. We only look at local structures at any point, so the graph structure need not remain fixed.

11 GNN (10/02)

The corresponding video is here.

He started off with a review of last lecture, and I didn’t really care to follow.

Question 11.1. Suppose we want to run some node-level task. What does it mean to have a
train/val/test split?

Answer. Simply deleting the held-out nodes and all incident edges doesn’t work. It is easy to
implement, but we can’t see the “not-missing” parts of the nodes to learn patterns. It can also
disconnect the graph.

14

https://www.youtube.com/watch?v=--PhFGtxpVw&list=PLnocShPlK-Fs_62EXCDykgtQFbHGLMT7U&index=11&ab_channel=IESGDepartmental

CS 182 Preston Fu

In practice, we want to maintain the graph structure. So we’ll mask a subset of the nodes during
training. This approach works especially well when the number of labeled nodes is small relative
to the number of unlabeled nodes (ignore noise).

Question 11.2. How do you speed up the spread of globally-relevant information?

Answer. Augment the graph with “global” nodes, which is connected to everything.

Question 11.3. How do you train when the graph is massive? How do you sample batches?

Answer. Some ideas are sampling nodes and taking all of its neighbors, or taking random walks
in a graph. In the former case, the receptive field scales exponentially, and in both cases, the central
node contributes much more to the loss than its surroundings. This can work well, but as a result,
we should choose our loss function carefully.

Question 11.4. How do you deal with padding?

Answer. You can get away with doing nothing, or try to establish boundary nodes.

12 GNN (10/04)

The corresponding video is here.

Again he did a lot of talking and not a lot of writing, so not much of it got copied here. For a
proper transcription see s23 notes.

Question 12.1. How do you train on huge graphs?

Answer. It’s hard to sample a minibatch. If you just select some connected subset of nodes and
the corresponding boundary, you run into several problems:

• No guarantee on the relative size of the selected graph and the boundary (whereas for im-
ages the boundary is small).

• Nodes near the boundary of a minibatch get less information, because they are within dis-
tance of only a few other nodes. Some techniques to mitigate this are adaptive sampling,
importance sampling, and graph coarsening.

He then did a general review, which I didn’t bother watching.

14 RNN, Self-supervision, Autoencoders (10/18)

The corresponding video is here.

RNNs

Recall the Kalman filter setup: nature has some latent transition variable xt = Axt−1 + But−1 +

wt, and we observe yt = Cxt + vt, where ut are known control inputs and wt and vt are zero-
mean, uncorrelated noise. Our goal is to use past controls {u0, . . . , ut−1} and past and current

15

https://www.youtube.com/watch?v=b2UVLf8vDiw&list=PLnocShPlK-Fs_62EXCDykgtQFbHGLMT7U&index=12&ab_channel=IESGDepartmental
https://inst.eecs.berkeley.edu/~cs182/sp23/assets/notes_new/lec11.pdf
https://www.youtube.com/watch?v=1AFgJ6q2r08&list=PLnocShPlK-Fs_62EXCDykgtQFbHGLMT7U&index=14&ab_channel=IESGDepartmental

CS 182 Preston Fu

observations {y0, . . . , yt} to estimate xt. KF gives us some recursive form

x̂t = Ãx̂t−1 + B̃uut−1 + B̃yyt

for some deterministic Ã, B̃u, B̃y (dependent on A, B, C, Σ(w), Σ(v)) true in expectation. [There is
some assumption on Gaussians, but I forget exactly and this isn’t too important.]

Suppose that we want to approach this problem with learning, where we don’t know any of the
required values for KF (namely A, B, C, Σ(w), Σ(v)). Now, let us consider the two possibilities:

• In the supervised case, suppose we have traces {(xt, yt, ut)}n
t=0. We can make Ã, B̃u, B̃y

learnable parameters with loss ℓ(xt, x̂t) = ∥xt − x̂t∥2, and proceed as usual.

• In the unsupervised case, suppose we are solving the original problem, i.e. we are given
{(yt, ut)}n

t=0. We have to be careful to not pass in these values as-is, since y will be passed
in as an input but is also used as a label (we don’t just want to copy it over). The solution is
to set ŷt+1 = C(Ax̂t + But) =: C̃x x̂t + Ĉuut (since we don’t know A, B, C), and make C̃x, C̃u

learnable. Our loss will be ℓ(yt+1, ŷt+1) = ∥yt+1 − ŷt+1∥2.

He went on to say something about introducing a hidden state that can be obtained from an
invertible transformation T̃ on x̂t, and how making another head with a separate loss ℓ(xt, x̂t)

might result in some conflicts because the losses pull in different directions. It didn’t seem super
important to I skipped most of it, but it’s probably a segway into the following thing.

In practice, there are some complications with RNNs:

• Where do you introduce nonlinearities in RNNs?

The whole purpose in an RNN is that applying Ã many times will make eigenvalues explode
or vanish. We apply ht = σ(Aht + · · ·) to combat this, i.e. the purpose of a nonlinearity is to
force eigenvalues to 1.

In RNNs, we often use saturating nonlinearities, e.g. tanh and sigmoid. This keeps values
reasonable but kills gradients.

• How do you use residual connections?

Vertical skips (i.e. between different RNN layers) work well, and is basically the same that is
used in a ConvNet. Horizontal ones (i.e. temporal) don’t, and aren’t really used in practice.

• Normalization?

You can add normalization blocks horizontally.

Self-supervision

Above, we used “unsupervised” (the old term) to mean the absence of an x. Really, this was
self-supervision, since we just used the data to supervise itself.

In CS 189, we saw PCA and k-means, which felt very different in nature than everything else we’ve
been doing. In fact, it is possible to understand these methods as though they are a self-supervised
regime, as we will see in homework.

15 Attention and Transformers (10/25)

The corresponding video is here.

16

https://www.youtube.com/watch?v=csdc-KHjEMg&list=PLnocShPlK-Fs_62EXCDykgtQFbHGLMT7U&index=15&ab_channel=IESGDepartmental

CS 182 Preston Fu

Figure 7: Sequence-to-sequence with RNN

One can interpret a transformer as a graph neural net with a fully connected graph. This is non-
trivial because we retain the idea permutation invariance. At a high level, we will use a similarity-
based aggregation of messages ∑v sim(u, v) f (v). So we have an MLP with an additional con-
straint, that one might not have thought of without a GNN.

The more historically accurate explanation for the transformer is the following: “How do you
produce an analog for U-nets in sequence-to-sequence models?”

Encoder-Decoder Approach

Suppose we want to translation from English to German. With an RNN, our model will look
something like Figure 7. The idea is that there will be an encoder RNN, which produces a final
hidden state after the last token. Then you will have a decoder RNN, which runs the translation.
There are many reasonable ways to do translation, so our output will be randomized with proba-
bilities given by a softmax. As a result of this randomization, we need to pass each output token
as an input to the next hidden state.

This approach doesn’t work great. Sure, the order of words matters. But there is more structure to
a sentence than its order — there is some hierarchical structure (e.g. an adjective modifies a noun,
a noun is performing the action indicated by a verb), similarly to images, that isn’t captured by an
RNN.

Our goal, then, is to have the decoder be able to look up relevant local context for each corre-
sponding hidden state in the encoder. (This is exactly like a U-net!) We want this memory to be
semantically meaningful — we don’t care to be able to index into the third element in our memory
array, but rather want to be able to query it by content.

Attention

We want a differentiable, softened, approximate hash table. Suppose our memory consists of
some key-value pairs, and we want to run some queries. (The keys come from the encoder, and
the queries come from the decoder.) We’ll run some ideas and see why they do or don’t work:

• Take the k closest to q, and return the corresponding v.

– This produces no useful gradients on k or q, since changing either of them by a small
amount will not affect the answer. It only produces useful gradients on the winning v,

17

CS 182 Preston Fu

and doesn’t do anything to the rest of them.

• Use the GNN approach, ∑i sim(ki, q)vi.

– Now we have good gradients on everything.

– We must decide what to use for our similarity. We can take ei = k⊤i q and αi := sim(ki, q) =
exp ei

∑j exp ej
.

* Consider the ei’s. Each ki is initialized to some random direction, and each q is too.
So their inner product is the sum of several iid things, and by CLT scales like a
Gaussian with variance O(d), where ki, q ∈ Rd.

* The ei’s will be scaled on the order of O(
√

d), and through the softmax, the problem
will worsen considerably (it’s basically a hard max). Even though initialization is
just noise, most gradients will die immediately.

* Instead, take ei = k⊤i q/
√

d.

This latter approach is known as cross-attention, because our keys and queries come from differ-
ent neural nets. It may also be the case that we want to query from the original neural net, called
self-attention: maybe it is insufficient to keep passing the outputs through the decoder RNN, and
it’ll be better to query for them too. This is useful if your output is “causal.”

In practice, it is also good to look up ℓ things from ℓ tables, called multi-headed attention. Intu-
itively, they function similarly to channels in CNNs.

The insight in [3] is that you can run self-attention and cross-attention everywhere, and you no
longer need the RNN.

16 Transformers (10/30)

The corresponding video is here.

Last lecture, we saw a graph neural net interpretation of a transformer. A key idea is that the
softmax is symmetric; we can’t distinguish the neighbors. However, this doesn’t make sense in
natural language: although we maintained before that literally indexing sequences doesn’t work
well, we have to have some notion of how we’ll order things (else “dog bites man” and “man bites
dog” are equivalent).

Each decoder block will consist of three parts:

• An embedder, which accepts (discrete) tokens and outputs a (continuous) vector. A simple
model for this is a lookup table; they are learnable parameters.

Notes:

– We can’t take gradients over discrete things. Output tokens from each decoder block
are inputs to the following decoder block; gradients don’t flow across them.

– Your training data might not include some words, so your embeddings won’t support
them (random initialization!). So in practice, you’ll use a coarser embedding that allows
extra words not in your dictionary.

• Decoder blocks, which consist of cross-attention, self-attention, MLP, and normalization and
are connected via residual connections. There are lots of possible ways to arrange them.
How do we decide what works best?

18

https://www.youtube.com/watch?v=wqsJvJOiyOw&list=PLnocShPlK-Fs_62EXCDykgtQFbHGLMT7U&index=16

CS 182 Preston Fu

We choose the one that performs better in compute time: it turns out that it works best to put
all of these blocks in parallel. In practice, we put our normalization before the other three.
The idea is that we want to make our vectors roughly the same size before they’re passed
through a softmax.

In each attention block, we have some keys, values, and queries, which are constructed with
matrices Wk, Wv, and Wq.

At training time, we apply causal masking: we don’t want the future to impact our current
predictions, so equivalently we can set scores in the softmax to −∞.

Positional encodings are done via RoPE. Intuitively, the idea is that you can encode time/-
position with something cyclic; the trick is to think in Cd/2 instead of Rd. RoPE says that of
q = Wqx, we use q = ΘmWqx, where Θm = diag

{
eimθk

}
k, where θk = 10000−2(k−1)/d. For

example, θ1 = 1, while θd/2+1 = 10000−1.

• An “inverse-embedder,” which accepts a vector and outputs probabilities for each token.
This uses weight sharing with the embedding.

We have to be careful with scaling (aka temperature); recall that we had to do d−1/2 scaling
in the past, and similarly should do this before passing dot products through a softmax.

17 Transformers (again) (11/01)

The corresponding video is here.

Transformers

Last time, we used RoPE as a modification to attention as positional encodings. Note that there
are no additional learnable parameters.

Another method is relative position embedding, where you replace
〈
qj, ki

〉
with

〈
qj, ki

〉
+ bj−i for

some learnable biases b per attention head.

Fine-tuning

Start with a trained network. Suppose we now have some data for a new task, and we want to
adjust our network to do well. Here are some approaches:

• Full fine-tuning: Treat the trained network as an initialization; just train on your new data.

• Linear probing: Typically, your network will have a linear head that produces scores for the
classes you care about. So one idea is to:

– “Decapitate” the old network (i.e. remove its head), which you expect to have learned
good features for your task

– Add your head with random initialization

– Freeze the old network, and train just your linear model

• We can also do a combination of these two ideas, e.g. if you have the resources to train the
full network, you can run linear probing then full fine-tuning.

19

https://www.youtube.com/watch?v=qyj6jRATaw4&list=PLnocShPlK-Fs_62EXCDykgtQFbHGLMT7U&index=17

CS 182 Preston Fu

Question 17.1. Our task might not have much data, but you can count on a pretrained model.
What things are ok to forget for our task, and what things aren’t?

• There is a large continuum of ways to freeze the network. For instance, you might want to
freeze the middle layers but make the top and bottom learnable.

• Don’t decapitate, and combine the old and new training data. Instead, just add a new linear
head, and learn two tasks.

• Any other regularizing effects: adjusting learning rates, explicit regularizers, early stopping,
etc.

Self-supervision and pre-training

Suppose we have a large unlabeled dataset. We want to be able to use it but don’t have any specific
task in mind. So we can instead make a “universal” surrogate task for pre-training. Here are some
common tasks:

• Autoencoders: given X, reconstruct X.

• Denoising autoencoder: Given X + N, reconstruct X.

• Masked autoencoder: Given N ⊙ {binary noise}, reconstruct X.

• Next-token prediction: Given X1, . . . , XT, predict XT+1.

18 Self-supervised training, Prompting, ViT (11/06)

The corresponding video is here.

Self-supervised training

To learn a pattern effectively with a large model, either you must have a strong inductive bias and
hope that it works well, or have a lot of data.

Example 18.1. GPT is a decoder-only transformer, i.e. we just use causal self-attention. We will
pass in tokens in order, beginning with [START]. Then, we will have some loss on each output to-
ken, maybe cross-entropy or the like, and run backprop, where each head attends to all preceding
tokens. Some implementation details:

• We use AdamW as an optimizer, as we want gradients to remain stable in such a large model.

• Generally, it is better to use longer context lengths (whatever will fit in memory; rather than
several short ones) due to the overall purpose of a transformer model.

• One epoch training: data is only seen once. (In homework, we’ll see empirically that this
tends to work best for a fixed compute budget.)

Example 18.2. BERT is an encoder-only transformer, i.e. just bidirectional self-attention, designed
solely for the pretraining-finetuning paradigm.

Due to the encoder structure, it is insufficient to accept input [START], T1, . . . , TN and produce
outputs T1, . . . , TN (the model will just copy over those tokens). We resolve this by running a

20

https://www.youtube.com/watch?v=adGZsBFnFZc&list=PLnocShPlK-Fs_62EXCDykgtQFbHGLMT7U&index=18

CS 182 Preston Fu

combination of masked and noisy auto-encoding (that is, we replace some inputs with [MASK]
and some with other words).

BERT produces activations at each self-attention layer, so for pretraining-finetuning purposes you
have lots of choices for which one(s) to use.

Example 18.3. Word2Vec was an unsupervised model some time ago that mapped similar words
to similar embeddings. An interesting phenomenon was that the resulting embeddings E dis-
played properties from the data that it wasn’t explicitly designed to do, e.g. E(king)− E(man) +
E(woman) ≈ E(queen).

Likewise, the model picked up on stereotypes present in the data. This led to alignment research,
which aims to suppress artifacts present in the data that we don’t want to learn.

Prompting

• GPT-1 was designed as a pre-training + fine-tuning regime, and could be used for specific
tasks.

• GPT-2 had the realization that prompting for next-word prediction works, e.g. “the capital
of France is .”

• GPT-3 introduced in-context learning. Prompts looked like this: “let’s play the capital game!
The capital of is . [Some more examples.] The capital of France is .”

ViT

Vision transformers work the same way as in language. We break images up into small patches
and run attention. Similar to our above discussion on text, ViT does not have any inductive biases,
but through pretraining on a large dataset alone learned the importance of locality in images.

Remark. In language, each token is quite valuable. In vision, patches are redundant, and we can
get away with dropping [MASK] tokens entirely to save compute.

19 Language models (11/08)

The corresponding video is here.

BERT

A slight continuation of last lecture.

BERT has an input sequence that is randomly masked and noised. It has two objectives:

• Reconstruct the input.

• Augment it with another input sequence, separated by a learnable <SEP> token, that appears
in the same long passage. The order of the input sequences is randomized. Then we have a
binary classification problem where we predict which sequence came first.

Typically, we want embeddings to be smaller than the original thing; for example, we looked
at autoencoders and PCA in the past. In a transformer network, however, it is sometimes good

21

https://www.youtube.com/watch?v=pYUv2X0O5JM&list=PLnocShPlK-Fs_62EXCDykgtQFbHGLMT7U&index=19

CS 182 Preston Fu

to consider an expanded set of features (in classical ML, for instance, we might’ve looked into
polynomials applied to our features). The size of each layer is exactly the same (recall that we
have residual connections), so looking at the activations from these layers gives us an expanded
“set of features.” Some research has shown that averaging the last four layers does pretty well.

Tokenization

A tokenizer maps variable-length strings into fixed-length vectors. The solution is called byte-
pair encoding (and is still roughly used today in LLMs), and is an algorithmic problem. It works
similarly to Huffman codes, where we map the most common substrings in a provided corpus to
some tokens. There is no ML here!

Beam search

In our usual setup, the encoder consists of several blocks with a token as input and a token as
output. Those output tokens are fed in as inputs to the following block. The output tokens are
generated by sampling from our distribution from the softmax outputs.

Suppose our model is fairly small, and the outputs aren’t great. Also suppose that we have some
fixed compute budget. One theoretical idea from tree traversal is to maintain some fixed number
of several paths, each generated by sampling. For each path, we will maintain its log probability
by summing the log prob on each token, and sometimes we will throw paths out or expand our
tree by branching.

This approach tends to work well with smaller models; for LLMs it is usually better to just produce
one sample (acting greedily).

Parameter-efficient finetuning

Previously, we discussed two methods of finetuning: linear probing and full finetuning. There is a
very big gap between these two approaches, and we want to bridge that gap. After all, we might
not have enough memory to even store the large model (all the activations and the optimizer state
would triple your required number of parameters), and training it can be quite hard.

20 Parameter-efficient finetuning and Meta-learning (11/13)

The corresponding video is here.

Parameter-efficient finetuning

To adjust our finetuning, we can either change the initial condition or the dynamics.

Soft-prompting

At a high level, the idea is that a language model with prompting solves a differential equation
with a very strong initial condition, so engineering the prompt can lead to a variety of results.

22

https://www.youtube.com/watch?v=08nUXdpmt6A&list=PLnocShPlK-Fs_62EXCDykgtQFbHGLMT7U&index=21

CS 182 Preston Fu

Recall that your prompt is treated as a collection of vectors that are outputs of an embedder; as
a result, it is possible to optimize the prompt. (Just run gradient descent, and your vectors will
change.)

The idea of soft-prompting is that the prompt felt by the model is the vectors and not the text.

A key discovery in LLMs is that the entire model might have lots of parameters, say in the billions.
You might have a prompt with length in the thousands or tens of thousands. Even so, optimizing
on the vectors from the prompt embedding provides a very substantial improvement over hand-
designed prompts. In fact, this usually performs as well or better than finetuning.

Suppose we have a larger budget for parameters. At each location in your model, a layer sees
the prompt through key-value pairs corresponding to preceding layers and tokens. It does not
experience the effect of MLPs or queries directly, but rather indirectly through those activations.
In the same way, as we broke the link between the vectors and the prompt with soft-prompting,
you can break the consistency relationship between the layers: perturb the keys and values, and
stop the gradients there. That is, your gradients flow left but not down. Then you have a range of
soft-prompting strategies based on how many key, value layers you tweak. (In general, tweaking
just the final layer is usually quite good.)

Low-rank adaptation

A transformer model has some Wk, Wv, Wq, and WMLP at each layer. Typically, the number of
weights in WMLP is the largest, but the rest can be quite substantial as well.

The idea is to replace WMLP with two components, namely the sum of Wfreeze and ∆W (which
allows gradient flow), with ∆W = BA where we can fix the number of parameters. For example,
if WMLP ∈ R500×1000 (requiring 500,000 parameters), then taking B ∈ R500×k and A ∈ Rk×1000

requires 1500k parameters. Taking k = 20, for example, only needs 30,000 parametersa but does
pretty well.

We also need to initialize B and A. We want ∆W to start at around 0, but setting B = A = 0 means
that the input to B is 0, and all gradients on B are 0. This isn’t a problem as long as exactly one of
A and B is nonzero, and we can set the other one randomly (it turns out that this doesn’t work if
you have both A and B nonzero for some reason).

One could alternatively have set ∆W with a random sparsity pattern, i.e. it has the same dimen-
sions but only 30000 nonzero entries. It turns out that this doesn’t work as well. Why?

Suppose we take B = 0 and A random. We are effectively taking a 1000-dimensional space and
projecting onto k random directions. By running gradient descent, we adjust our basis to better fit
the data. In the sparse case, on the other hand, gradient descent can’t help you change the sparsity
pattern.

At a high level, the idea behind LoRA is similar to that of PCA: we want the variations in the
directions that matter be significant, and we don’t really care about everything else. So we don’t
lose very much through a low-rank approximation.

Question 20.1. We know that large models do better. Yet in practice, reducing their size to speed
up training still does very well. Contradiction?

Answer. This is an open question. It may be possible that having a large model is helpful to
reaching a good initial condition, at which point you don’t need too many parameters to finetune.

23

CS 182 Preston Fu

Meta-learning

Question 20.2. Can I learn a model that is good for finetuning?

Answer.

• So far, we have used the following approach: pick a self-supervised task and collect all the
data you can.

• Use the first approach, then finetune on a good task.

To do better, we must assume that we have a family of tasks with labeled training data that should
do well on unseen new tasks.

This is given by Model-Agnostic Meta-Learning (MAML) [1].

21 Meta-learning, Generative Models (11/15)

The corresponding video is here.

Meta-learning

Assume you have some base model parameterized by θ0, and you have a meta training set of tasks
with labeled training data.

The idea of MAML is that you will have several tasks. For each task, you’ll have some loss, which
you optimize using your training set to obtain a new set of parameters θfinetuned. Then you will
evaluate θfinetuned on a holdout set. Then the objective is to find θ0, i.e. find a model such that the
entire thing can be easily fine-tuned.

Algorithm 1 MAML

1: while not converged do
2: pick a training task and its corresponding data
3: θ ← θ0

4: for k steps do
5: θ ← θ − η1∇θℓ(y, fθ(x))
6: end for
7: sample n holdout points (xi, yi) uniformly at random
8: g← 1

n ∑ ℓ(yi, fθ(xi))

9: θ0 ← θ0 − η2∇θ0 g
10: end while

In previous lectures, we saw an approach to the same problem where we have a shared network
and several task-specific heads, and train the whole network. Then we attach a new head and
finetune just the head. Clearly this is much cheaper than MAML (and in some cases performs
quite well). One trick to speed it up even further is to set head weight matrices according to ridge
regression rather than running SGD on so many separate points.

24

https://www.youtube.com/watch?v=BgjfF5dwNYA&list=PLnocShPlK-Fs_62EXCDykgtQFbHGLMT7U&index=21

CS 182 Preston Fu

Generative models

The approach we saw to language problems is called auto-regressive generation, i.e. GPT. Effec-
tively, we produce output tokens x0, x1, . . . , where we learn pθ(Xt = xt | Xt−1 = xt−1, . . . , X0 =

x0).

22 VAE (11/20)

The corresponding video is here.

Suppose we have a learned system that can generate images of cats. When we call the model, we
want it to be able to generate a new image of a cat. How do we do this?

Typically, we will feed some random vector into the learned system and output an image of a cat.
This raises some questions: (i) what sorts of systems would facilitate this process, and (ii) if we
have data, how do we train the system?

Idea 0: Use a classifier. Suppose you have a classifier that accepts images and outputs scores
for each category. SO you can initialize x0 randomly (e.g. Gaussian noise), which will produce
some dog classification score. Then you can run gradient ascent on the score.

In reality, the dog score increases, but it will look like static. Likewise, if you start with an image
of a sheep, you’ll end up with a sheep, but your classifier will be convinced that it is a dog. This is
known as the adversarial example phenomenon.

We will investigate this phenomenon with the following toy model: you have some x ∈ Rd+1, with
x[1] ∼ N (0, σ2) and σ2 ≫ 1 and x[i] ∼ N (0, 1) for i ∈ {2, . . . , d + 1}, with the entries of x jointly
independent. The ground truth label is sgn(x[1]), and the model learns a classifier sgn(α⊤x).

Now, suppose α[1] = β and α[i] = 1. Then α⊤x = βx[1] + ∑d+1
i=2 x[i] = u + v, where u = βx[i] ∼

N (0, β2σ2) and v = ∑d+1
i=2 x[i] ∼ N (0, d). For α to be a good classifier, we require βσ≫

√
d.

The gradient update is x′ = x + ηα, or equivalently α⊤x′ = u + v + η(β2 + d). Suppose we want
to find an adversarial example, Then:

• For our gradient steps to be useless, we want the ∆x to be small enough that it is negligible.
Since u ∈ O(βσ) and ∆x ∈ O(β2), we can enforce this by taking σ≫ β.

• For our classifier to be bad (the influence of x[2 : d + 1] is greater than that of x[1], we want
d≫ βσ.

If we can satisfy all three of these conditions, we have a confused classifier. For example, taking
σ = d1/2, β = d1/4, and η = d1/8 suffices.

Idea 1: Use an autoencoder. Run the decoder on random noise.

What do we mean by random? What are we sampling from?

In fact, we find that this process alone is insufficient, even when x is Gaussian and E , D are linear.
Let x = UΣV⊤ ∈ Rd×n. We showed in homework that the autoencoder will learn

E =

u⊤1
...

u⊤k

 =⇒ E(x) ∼ N (0, diag(σ2
1 , . . . , σ2

k)).

25

https://www.youtube.com/watch?v=Ak8IMEA_KvQ&list=PLnocShPlK-Fuo4Lq1aeyYc6D6Z6C2n2y9&index=23

CS 182 Preston Fu

So really we want to learn

E =

u⊤1/σ1
...

u⊤k/σk

 =⇒ E(x) ∼ N (0, I),

but we can’t do this a priori because we know nothing about the distribution of x. Moreover, once
our encoder and decoder become nonlinear, we cannot simply fit a Gaussian to x.

Idea 2: VAE We want it to satisfy the following conditions:

(i) We want the encoder to be robust to noise. So it will accept an input x and samples outputs
from a distribution. (Learn a mean network and a covariance network.)

(ii) We will add a regularizer during training so that the latent distribution is close to what we
want to sample from. (Impose a KL regularizer.)

(iii) We want to be able to run SGD despite sampling. (Reparameterization trick.)

22 VAE (11/22)

The corresponding video is here.

Last time, we suggested using an autoencoder, where we feed noise in through the decoder.

• Q: What distribution of latents?

A: N (0, I).

• Q: What loss function?

A: DKL(Q∥P) = Ez∼Q

[
log Q(z)

P(z)

]
.

Remark. Some intuition for KL-divergence: Take n iid samples from P. Then

P(“samples look like Q”) ≈ exp(−nDKL(Q∥P)).

Example 22.1. If P = N (0, I) and Q = N (µ, Σ), then

DKL(Q∥P) =
1
2
(tr Σ + µ⊤µ− k− log det Σ).

One idea is to have E(x) produce outputs µ(x) and Σ(x), and inputs to the decoder will be
sampled from N (µ(x), Σ(x)). We will have two losses: a sample loss given by DKL(N (µ(x) ∥
Σ(x)),N (0, I)) (in the case that we want our samples to look likeN (0, I)), as well as a reconstruc-
tion loss. If we too heavily weight KL, then our reconstructions will be poor. On the other hand,
if we too heavily weight reconstructions, then our reconstructions will look fine but at test time
sampling from N (0, I) won’t work.

Question 22.2. How do you run backprop through samples?

Answer. Reparameterization trick: instead learn Σ1/2. Let ε ∼ N (0, I), and let z = µ + Σ
1
2 ε. Then

you can treat ε as an input (no need to push gradients on it), and you can easily get gradients for
µ and Σ1/2.

26

https://www.youtube.com/watch?v=hQWTqLyqS78&list=PLnocShPlK-Fuo4Lq1aeyYc6D6Z6C2n2y9&index=24

CS 182 Preston Fu

Next, we will discuss VQ-VAE. Suppose you have some real number X = ∑∞
i=−∞ Xi2i for digits di.

Now, take X + U, where U ∼ U(− 1
2 , 1

2). Intuitively, this randomly flips the bits in the digits in X
after the decimal point. However, some digits survive, and in essence the amount of information
that remains is the number of digits preceding the decimal.

This motivates the use of quantization as a noisy process. In a VQ-VAE, latents are quantized via
k-means. With intuition following the noisy process, simply pass gradients through.

The benefit of quantizzation is that discrete tokens are handled well by methods in natural lan-
guage.

24 GAN & Diffusion Models (11/27)

The corresponding video is here.

GAN

A generator accepts randomness and produces an image. To help, we make a discriminator, which
is a classifier that accepts a candidate image and outputs a binary “real or fake.” The idea is to go
back and forth between training the generator and discriminator, since they are mutually helpful.

In practice, GANs are very tricky to train due to “mode collapse”: the generator and discriminator
have opposing objectives even though we want them to work together. Thus, it is easy for the
generator to produce bad samples, i.e. the discriminator only thinks one kind of images is correct.
In this case, gradients through the discriminator are small, and neither thing moves. There is a lot
of research trying to get GANs to work well.

The benefit of GANs is that they are very fast. They can use a relatively lightweight model,

Diffusion Models

The manifold hyothesis says that the set of satisfactory things is quite small, probably within some
small low-dimensional space rather than scattered throughout. By chance, you’ll never land on
this set. The idea of diffusion is that starting with some random noise, we can find a path to end
up there.

Diffusion gradually adds noise to a ground truth image X0 in a process to X1, . . . , XT. T should
be quite large, so that XT is roughly pure noise. We will train a neural net to learn the reverse
process, X̃T → X̃T−1 → · · · → X̃0.

The typical approach is Ni
iid∼ N (0, 1), and take Xi+1 =

√
1− βXi +

√
βNi. The idea is that Xi

always has mean 0 and variance 1, and Xi is fully attenated and ultimately replaced by Gaussians.
In the limit, it is N (0, 1).

References

[1] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast Adap-
tation of Deep Networks. 2017. arXiv: 1703.03400 [cs.LG].

27

https://www.youtube.com/watch?v=KnnvmaEXmEU&list=PLnocShPlK-Fs_62EXCDykgtQFbHGLMT7U&index=22
https://arxiv.org/abs/1703.03400

CS 182 Preston Fu

[2] Dan Hendrycks et al. PixMix: Dreamlike Pictures Comprehensively Improve Safety Measures. 2022.
arXiv: 2112.05135 [cs.LG].

[3] Ashish Vaswani et al. “Attention Is All You Need”. In: arXiv:1706.03762 (Aug. 2023). arXiv:1706.03762
[cs]. DOI: 10.48550/arXiv.1706.03762. URL: http://arxiv.org/abs/1706.03762.

28

https://arxiv.org/abs/2112.05135
https://doi.org/10.48550/arXiv.1706.03762
http://arxiv.org/abs/1706.03762

	Machine Learning Review (08/28)
	What is Machine Learning?
	Gradient Descent
	Neural Networks

	Gradient Descent, Regularization, SGD (08/30)
	Least Squares
	SVD Perspective
	Gradient Descent

	Gradient Descent, Regularization, SGD (09/06)
	Initialization
	Optimization

	Adam, SGD (09/11)
	Adam
	SGD

	ConvNets, Normalization (09/13)
	Normalization Layers, ResNets (09/18)
	Normalization
	ResNets

	ResNets, Fully Convolutional Nets (09/20)
	Dropout, SGD (09/25)
	Dropout
	SGD

	Graph Neural Networks (09/27)
	GNN (10/02)
	GNN (10/04)
	RNN, Self-supervision, Autoencoders (10/18)
	RNNs
	Self-supervision

	Attention and Transformers (10/25)
	Encoder-Decoder Approach
	Attention

	Transformers (10/30)
	Transformers (again) (11/01)
	Transformers
	Fine-tuning
	Self-supervision and pre-training

	Self-supervised training, Prompting, ViT (11/06)
	Self-supervised training
	Prompting
	ViT

	Language models (11/08)
	BERT
	Tokenization
	Beam search
	Parameter-efficient finetuning

	Parameter-efficient finetuning and Meta-learning (11/13)
	Parameter-efficient finetuning
	Meta-learning

	Meta-learning, Generative Models (11/15)
	Meta-learning
	Generative models

	VAE (11/20)
	VAE (11/22)
	GAN & Diffusion Models (11/27)
	GAN
	Diffusion Models

	References

