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These are course notes for the Spring 2024 rendition of CS 184, Com-
puter Graphics and Imaging, by Prof. Ren Ng. They cover almost all of
the official course slides, but with words instead of pictures. Hopefully
this is slightly easier to interpret!

The course ended with some guest lectures, which I attended sparsely.
If you’re interested in NeRF, check out my notes for CS 294-158.
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3 · DRAWING TRIANGLES (01/18)

1 Introduction (01/16)

The lectures slides are here.

This lecture was an overview of the course. He introduced himself,
showed some videos, and reviewed the course policies.

2 Drawing Triangles (01/18)

The lecture slides are here.

Figure 2.1. Roadmap of the (first
part of the) course

The course breakdown is as follows:

• 4 homework assignments, each 12.5 points, in a team of 1-2.

• Two in-person exams, each 10 points.

• A final project, worth 25 points, in a team of 4.

• Participation, worth 5 points.

There are 8 late days for the semester, which apply only to home-
work assignments. (Max 4 late days on the last assignment.)

A roadmap of the course is in Figure 2.1.

Overview

In computer graphics, we have vector representations of things. We
can make art with rasterization, fabrication, or use an oscilloscope with
electron arrivals.

https://cs184.eecs.berkeley.edu/sp24/lecture/1/introduction
https://cs184.eecs.berkeley.edu/sp24/lecture/2/drawing-triangles
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A display accepts RGB signals as inputs (frame buffer) and must out-
put intensities (raster display). LCDs block or transmit light by twisting
polarization. Alternatively, you can use an LED display, which emits
light with diodes, or a DMD projection display, where mirrors get an-
gled specifically to project light in particular directions.

Different smartphones use different screen designs. For instance,
iPhone 6S uses red/green/blue in columns, while Galaxy S5 has them
interleaved. Thus, there are different requirements for how light should
be emitted from each diode.

Typically, polygon meshes are used as representations for 3D objects.
Take, for example, a tiger. The idea is to map images onto this mesh,
known as texturing.

Today, we will focus on constructing the mesh.

Idea. Specify the vertices and color of each triangle. Finally, project the
result onto the screen.

There’s lots of difficulties with this, such as objects appearing behind
one another, or ambient lighting. This is the topic of this course.

Figure 2.2. OpenGL pipeline

OpenGL (a drawing machine) is an API for our purposes in this lec-
ture; we will discuss it in more depth in future lectures (see fig. 2.2 for
a high-level overview). We pass it triangles, lines, points, and images,
and it outputs pixels in the frame buffer, with GPU acceleration.

Triangles

Question 2.1. Why do we use triangles?

Answer. There are lots of conceivable types of meshes. In practice, we
tend to use triangles because they are the most basic polygon and are
guaranteed to be planar (i.e. they define a plane, eliminating the need
for specifying which triangles other polygons are constructed from).
Furthermore, we can use barycentric coordinates to interpolate values
at vertices over triangles.

Question 2.2. How do we rasterize a triangle? That is, suppose you
put a triangle on the plane, where you have a lattice grid. How can you
approximate a triangle with pixel values?

Answer. Use sampling, the standard method for discretizing a func-
tion. In fact, you can sample from n ∈N∪ {∞} dimensional spaces. In
this case, we only care about sampling in R2, where you can define

INSIDE(triangle T; x, y) = 1{(x, y) ∈ T}.
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Simply evaluate the function at [x + 0.5, y + 0.5] for x, y integers in the
desired range to render the image.

To actually evaluate INSIDE, observe that a triangle is the intersec-
tion of three half-planes. So you can just check that the point of interest
is in the correct half-plane for each edge.

Suppose you have a line with tangent vector n = [x, y] and tangent
vector t = [−y, x]. The idea is that the sign of L(v) = v · n will tell you
whether v is above/on/below the line. If all three of your inequalities
satisfy L ≥ 0, you win.

Question 2.3. Suppose you have a point on an edge between two tri-
angles. Which triangle does it belong to?

Answer. Ideally, it should belong to exactly one. It is ok but inefficient
if it belongs to both. It is awful it belongs to neither (your mesh will
have cracks).

Question 2.4. Suppose you have a large triangle. On a GPU, how do
you efficiently rasterize?

Answer. Process cells in blocks. If the entire block is inside the triangle,
then you should be able to update it very quickly.

Question 2.5. The method above will produce jaggies, i.e. a staircase-
stepping function. If you have triangle edges with weird slopes, you’ll
end up with terrible irregularities. See, for instance, Figure 2.3.

Figure 2.3. Jaggies

3 Sampling and Aliasing (01/23)

The lecture slides are here.

Much of graphics is possible with ray tracing. The idea is that for
any 3D object, we can get a pixel value at any point by sampling rays to
approximate an integral. However, there are problems due to sampling
we need to account for.

Some common examples of artifacts due to sampling, i.e. aliasing,
are Moiré patterns (weird pixel patterns while downsampling) and jag-
gies (staircase pattern). The idea of antialiasing is to filter out high
frequencies before sampling.

Example 3.1. You have a camera that captures an image at some tiny
interval of time, say ε = 1/4000 s. However, it operates at 60 fps. So
your video camera will produce some motion blur, rather than taking
just the image in that ε-second period.

https://cs184.eecs.berkeley.edu/sp24/lecture/3/antialiasing
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Example 3.2. For rasterization, apply some pre-filtering to remove high
frequencies before sampling. See Figure 3.1. (Doing it the other way
doesn’t help; that just makes blurry jaggies.)

Figure 3.1. Rasterization with
antialiasing

The idea of a Fourier transform is that you can decompose any (nice)
function as a weighted sum of sines and cosines. See, for example,
Figure 3.2. Formally,

F(ω) =
∫ ∞

−∞
f (x)e−2πiωxdx,

and the inverse transform is

f (x) =
∫ ∞

−∞
F(ω)e2πiωxdω.

(We won’t need to know the math for this class.)

Figure 3.2. Approximating a
square wave with sinusoids

The sampling problem is that undersampling creates frequency aliases;
that is, high-frequency signals appear indistinguishable from low-frequency
samples. So sampling at too low of a frequency will cause high frequen-
cies to get aliased (which could cause any of the problems we men-
tioned before). See Figure 3.3.

Figure 3.3. Frequency aliasing

See the slides for some examples of the correspondence between spa-
tial and frequency domains. A key example is that the frequency do-
main function 1{(x, y) = (0, 0)} will produce a constant pixel value in
the spatial domain. The important thing is that high frequencies will
produce pixel variations over a smaller spatial range. For example, if
you filter out low frequencies, you’ll get edge detection.

Theorem 3.3. Convolution in the spatial domain is equal to multiplication in
the frequency domain, and vice-versa.

For example, suppose you have an image and a blurring kernel you use
for convolution. When you apply the kernel to the image, you’ll end up with
a blurry version of that image. Or you can consider this in the frequency
domain, where you multiply the Fourier transform of the image and that of the
kernel, then apply the inverse Fourier transform to get the same thing.

Theorem 3.4. We get no aliasing from frequencies in the signal that are less
than the Nyquist frequency (half of the sampling frequency).

Example 3.5. Suppose you have the image sin(2π/32)x in the sam-
pling domain, and you sample every 16 pixels. (So they hit alternat-
ing white/black). Then the Nyquist frequency of sampling is exactly
1
2 ·

1
16 = 1

32 , and the maximum signal frequency is 1
32 . So there is no

aliasing.

On the other hand, if you have the image sin(2π/16)x and sample
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every 16 pixels, you will hit only white. So you’ll have aliasing. (One
way to fix this is just by sampling every 8 pixels.)

Example 3.6. Gaussian blur just means multiplication by a Gaussian
kernel in the frequency domain.

Combining all of this, we use the approach in Figure 3.4. The idea
is that we will filter the original image to reduce the maximum sig-
nal frequency, then create a low-res image by sampling only every 16
pixels. (In general, we prefer 4, which actually has some aliasing. In
practice, we use the Nyquist frequency as the cutoff to perform full
anti-aliasing.)

Figure 3.4. Visual example for
nyquist frequencies

4 Sampling & Aliasing & Transforms (01/25)

Sampling & Aliasing

A review of last time: to reduce aliasing error, we can:

• Increase the sampling rate (and thus increase the Nyquist frequency),
which also requires higher resolution

• Antialiasing: remove signal frequencies above the Nyquist before
sampling

A classic example of a pre-filter is a 1 pixel-width box filter, which
attenuates frequencies with period at most 1 pixel-width.

Observe the equivalence between the following two approaches:

• Pre-filter by a 1-pixel box-blur, then sample per pixel

• Compute the average value in the pixel (for instance, if you have
something on an edge or vertex, the pixel average value will be in
(0, 1))
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To accomplish the latter approach, we will supersample. That is,
we will render a higher-resolution image of the triangle, where in each
pixel you take N × N samples. Of course, this approach is very costly
(scales with N2).

Figure 4.1. One pixel box filter

This approach still produces aliasing, though, because we saw last
time that with this method of filtering, we still get frequencies out to
infinity. See Figure 4.1.

Question 4.1. How should you sample: Uniformly? Use samples in-
side or outside the picture? How do you supersample multiple trian-
gles?

Remark. A popular stress test is sin
(
x2 + y2), where you’ll end up with

some under-sampled and over-sampled points.

Transforms

The lecture slides are here.

There are lots of different types of transforms, e.g. scaling, rotations,
and translations. We need them to model coordinates in a convenient
representation, enable multiple copies of the same objects, and effi-
ciently represent hierarchical scenes. To display 3D scenes, we need
to convert from world to camera coordinates, then project onto a 2D
screen.

S(sx , sy) =

sx 0 0
0 sy 0
0 0 1



R(α) =

cos α − sin α 0
sin α cos α 0

0 0 1


T(tx , ty) =

1 0 tx
0 1 ty
0 0 1



Figure 4.2. Transformations in
2D

To represent translations as a linear map in 2D, just augment 1 to
your coordinate system. That is, your scaling, rotation, and translation
matrices are shown (respectively in Figure 4.2.

Question 4.2 (Common exam question). How can you decompose a
complex translation into the simple methods we described above?

You can use the same thing in 3D. To rotate about an arbitrary axis,
you construct an orthonormal frame transformation F, then run FRF−1

where R denotes the desired rotation where you line up the axes.

Rx(α) =


1

cos α − sin α

sin α cos α

1



Ry(α) =


cos α sin α

1
− sin α cos α

1



Rz(α) =


cos α − sin α

sin α cos α

1
1



Figure 4.3. Transformations in
3D

For example, if you’d like to rotate about an axis, your matrices will
look like those shown in Figure 4.3.

5 Transforms & Texture Mapping (01/30)

Transforms

The lecture slides are here.

https://cs184.eecs.berkeley.edu/sp24/admin/lectures/4
https://cs184.eecs.berkeley.edu/sp24/lecture/4/transforms
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The idea behind a hierarchical representation is that you can model
a rigid body as consisting of multiple parts. When you transform each
part, other parts will move with it. For example, if you have a skele-
ton and apply a transformation to someone’s arm, then their hand will
move with it. You can just move the entire thing together, rather than
worrying about each individual thing separately. See, for example, Fig-
ure 5.1.

Figure 5.1. Hierarchical trans-
forms

We capture the world through cameras, so we care a lot about camera
space. Typically, we will use the following setup: a camera is looking
down the (negative)−z axis, up is the y axis, and right is the x axis. The
result is that in any picture through a camera, the center of the image is
the origin, the x and y axes are natural, and the z axis is out of the page
(away from the scene).

Equivalently, you can model this in the real world as follows: e rep-
resents the position of the camera, u represents up, and v represents
the view direction (where the camera is facing). One can check that the
matrix to convert from camera to world space is

C2W =

(
r u −v e
0 0 0 1

)
, with inverse W2C =


r⊤ 0
u⊤ 0
−v⊤ 0
0⊤ 1


(

I3 −e
0⊤ 1

)
.

Now, the task remains to project from 3D to 2D. The difficulty here
is perspective (which wasn’t understood in art for the longest time!).
This was only properly figured out in Delivery of the Keys by Perugino
in 1491; see Figure 5.2.

Figure 5.2. Delivery of the Keys

Figure 5.3. The person is in the
same place, but the lens is chang-
ing.

Eventually, people figured out that a camera can work similarly to
the eye: if you have a pinhole in a sheet, then its projection onto another
sheet will be an inverted copy of the same thing. Suppose you have a
camera at the origin, and an object is at [x, y, z]⊤. Then the projection
onto the plane z = d is the mapping [x, y, z] 7→ [x · d/z, y · d/z, d]⊤. To
get this transformation in homogeneous coordinates, multiply by

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

.

Remark. Division is hard to do on a chip. People have tried working
out alternatives, but this is the best we’ve been able to do. We isolate
the division to this particular matrix.
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The parameters for perspective really do matter! See Figure 5.3.

To specify how the perspective works, there are a couple parameters;
see Figure 5.4. The idea is that you can specify fovy (vertical angular
field of view), aspect ratio (width-height ratio), near (depth of the near
clipping plane), and far (depth of the far clipping plane). From this, you
can derive: top = near · tan(fovy), bottom = −top, right = top · aspect,
and left = −right.

Figure 5.4. Parameterizing per-
spective viewing volume

Figure 5.5. Conversion between
camera and world coordinates

Suppose we want to convert from perspective to the real world. We
can apply the perspective transform matrix given in Figure 5.6.

P =


near
right

near
top

− far+near
far−near

−2far·near
far−near

−1



Figure 5.6. Perspective trans-
form matrix

For instance, once can verify that

P
(

right top −near 1
)⊤

=
(

1 1 −1
)⊤

,

as in Figure 5.5.
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Concept. The pipeline is as follows:

• To convert from object coordinates to world coordinates, use a mod-
eling transform.

• To convert from world coordinates to camera coordinates, use a view-
ing transform.

• To convert from camera coordinates to normalized device coordi-
nates (NDC), use a projection transform and homogeneous division.

• To convert from NDC to screen coordinates, use a screen transform.

• To display the object with screen coordinates, use rasterization.

Texture

The lecture slides are here.

The motivation for texture mapping is depicted in Figure 5.7, or per-
haps as a world map. A surface lives in 3D space, and every point
(x, y, z) has a corresponding location (u, v) in a 2D texture map.

Figure 5.7. Chocolate wrapper
as an analogy for textures

In practice, you’ll have some triangle mesh representing your 3D ob-
ject, and each vertex in the triangle will be associated with some color.
To interpolate between points inside the triangles, we use barycentric
coordinates: points inside△ABC can be represented as αA + βB + γC
for α + β + γ = 1. You then interpolate the value V at any point in a
triangle in exactly the same way, αVA + βVB + γVC.

6 Texture Mapping (02/01)

The lecture slides are here.

Last lecture, we discussed barycentric coordinates, and discussed
the conversion from barycentric to cartesian coordinates. Now, we will
do the other direction.

The key observation is that (x, y) = Z = αA + βB + γC satisfies the
property that the

dist(Z, BC)
dist(Z, A)

=
α

1− α
.

The idea, then, is to derive

LPQ(x) = −(x− xP)(yQ − yP) + (y− yP)(xQ − xP) ∝ dist(x, PQ).

https://cs184.eecs.berkeley.edu/sp24/lecture/5/texture
https://cs184.eecs.berkeley.edu/sp24/lecture/5/texture
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The derivation was discussed in the second lecture; note that this dis-
tance is signed, depending on the relative position of X and PQ. Then

α =
LBC(x, y)

LBC(xA, yA)
.

Barycentric interpolation is not sufficient; we also have to apply a
projection transform, where we scale everything by their depth. (Di-
vision is cheap now, so this isn’t as much of a problem as it was be-
fore.) See Figure 6.1; the idea is that, otherwise, evenly-spaced objects,
when projected onto a non-parallel image plane, will become unevenly
spaced in the output.

Figure 6.1. Perspective nonlin-
earity

Concept. Applying textures is sampling. The idea is to model samples
with some discrete function f (x, y), and to reconstruct a continuous 2D
function fcont with some convolution filter k(x, y). Then you can draw
your desired sample by evaluating fcont at your point (u, v).

A naive approach looks like Figure 6.2. In this case, we maintain
both a pixel space and a texture (texel) space. (We previously discussed
this in the 3D case.) When you magnify an image, you upsample from
texels, and when you minify, you downsample. Ideally, you will have
a 1:1 scale mapping between pixels and texels.

Figure 6.2. Naively sampling
points produces aliasing

There are many types of filters, e.g. Figure 6.3, where lerp stands for
linear interpolation. Some other approaches are nearest-neighbor (just
use the pixel value at the closest one; makes it very blocky) and bicubic
(fit a cubic to a 4× 4 grid; potentially computationally intensive).

Figure 6.3. Bilinear filtering

The issue with this approach is shown in Figure 6.4; the texture
sampling pattern is in fact not rectilinear or isotropic (recall the re-
quired transformations from last lecture), and furthermore we want
some bounds on the frequency to avoid aliasing. However, we’d like to
do this efficiently, where we have O(1) texel lookups per pixel.

Figure 6.4. Correspondence be-
tween screen space and texture
space

The idea here is to take a texture map, apply a low-pass filter, and
downsample it. Do this recursively, where at each step you have succes-
sively lower maximum signal frequencies. For each sample, we use the
texture file whose resolution approximates the screen sampling rate.
This approach is known as mipmap.

Example 6.1. If you have a 128× 128 image (we call this mipmap level
0), this is equivalent to downsampling to a 64× 64 image (level 1) by
averaging 2 × 2 blocks, as we discussed in the lecture on frequency
domain. Now repeat this for 32× 32 (level 2), and so on.

To compute D per pixel, we use the approach of Figure 6.5, where we
estimate derivatives using a discrete approximation (take the difference
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across neighboring cells), and take the max to avoid aliasing in both
dimensions. See Figure 6.6 for a sample visualization of mipmap levels.
One technicality is that D need not be an integer, so the idea of trilinear
filtering is to run bilinear filters on levels ⌊D⌋ and ⌈D⌉, and linearly
interpolate between the two.

Figure 6.5. Computing mipmap
level D

Figure 6.6. Example of D in an
image, rounded to the nearest in-
teger

7 Texturing & Rasterization & Geometry (02/06)

Advanced texturing methods

The lecture slides are here.

Suppose you have a reflective object, and you want to map a texture
onto it. The idea is to consider what direction light will reflect off the
object with respect to the camera, and you can map the resulting point
in texture coordinates onto the object. See Figure 7.1.

Figure 7.1. Mapping a texture
via reflection

Recall that we previous mapped points onto a surface by fitting a
triangular mesh. This is fine but inefficient: previously, we discussed
that points near the north and south poles on a sphere get assigned lots

https://cs184.eecs.berkeley.edu/sp24/lecture/5/texture
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of triangles unnecessarily. The idea is to use a cube map, where you
map the same direction on a sphere as a cube. See Figure 7.2.

Figure 7.2. Cube map

Another hack for representing bumpy surfaces is to use a bump
map, which perturbs the texture to the surface normal. That is, the nor-
mal vectors get displaced a little bit, so that the colors inside the pixels
get changed. The displacement mask alters the geometric structure of
the mesh, i.e. the positions get perturbed.

Figure 7.3. Bump map

Another method is called Perlin noise, where you apply n-dimensional
procedural noise and model solids. (For instance, this is used in Minecraft.)
There are lots of algorithms here; see Wikipedia for more.

Another method is volume rendering, which is used in NeRF.

The rasterization pipeline

Suppose you have some objects rotating in space. Once the front ob-
ject (A) rotates behind the back object (B), the frame buffer gets over-
written, and the pixels at the overlap will correspond to A, when really
they should correspond to B, which is now in the front.

There’s lots of thigs to be improved here. Ultimately, our goal is to
get to something like Figure 7.4. There’s lots of impressive features here
despite simulation, in particular how light it diffuses off the napkin,
refracts through the glass, demonstrates the bumpiness in the utensils
and smoothness of the mug, and vision/camera-like blur.

Figure 7.4. I’m hungry

We’ll work up to this through several parts:

Visibility Suppose you have many objects and want to figure out which
ones are visible from the perspective of the camera.

Naively, we might want to use a painter’s algorithm, i.e. paint objects
back-to-front. This doesn’t work directly; see Figure 7.5. One way to get
around this is to triangulate small enough, then sort objects in order, but
this is quite inefficient (for n triangles, you need O(n log n)).

Figure 7.5. Unresolvable depth
order

In practice, we like to use a Z-buffer, where you store the current
z-value for each sample position. In addition to RGB, you add an addi-
tional buffer for depth, which is 16 to 32 bits. When sampling, you take
the smallest z-coordinate corresponding to any (x, y). See Figure 7.6.
The performance is great: for n triangles, runtime is O(n).

Simple shading We want to achieve characteristics of light indicated in
Figure 7.7. Let’s do some physics!

https://en.wikipedia.org/wiki/Perlin_noise
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Figure 7.6. Z-buffer algorithm

Figure 7.7. Pereptual observa-
tions

Suppose we have the following setup: a surface has a normal vector
n, a viewer is in the direction v, and a light source is in the direction
l (for simplicity, all of these vectors have unit norm). The surface has
some parameters, such as color, shininess, etc.

In diffuse reflection, we assume that light is scattered uniformly in
all directions on the same side as the surface. That is, the contribution
to surface color is not dependent on v, subject to a direction indicator.
Lambert’s cosine law gives that the light per unit area is proportional
to cos θ = l · n, where θ is the angle between l and w. See, for instance,
Figure 7.8.

Suppose you have a light source with intensity I. Distance r from
the light source, the intensity is I/r2. Putting this all together,

Ld := kd(I/r2)max(0, n · l),

where kd is a diffuse constant.

Figure 7.8. Example of Lam-
bert’s cosine law

Specular shading is intense when the viewer is near the reflection
of the light source off the surface (i.e. the reflection of l over n). To
measure “near”, we will define h as the angle bisector between v and
l, and use dot product as a matrix. The model (which, unfortunately, is
more of a hack than physically inspired) is given by Figure 7.9.

Finally, to accomplish ambient shading, for now we will represent
this using a constant La = ka Ia, and come back to this in another lecture.

The Blinn-Phong reflection model aggregates these methods,

L = La + Ld + Ls

= ka Ia + kd(I/r2)max(0, n · l) + ks(I/r2)max(0, n · h)p.
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Figure 7.9. Blinn-Phong model
for specular shading

Shading triangle meshes There are several methods for shading a trian-
gle mesh: triangle (flat), vertex (Gouraud), and pixel (Phong). In prac-
tice, we like to use vertex normals, where you can either use the under-
lying geometry to acquire a normal, or interpolate based on the incident
faces. Then you can get per-pixel normal vectors through barycentric
interpolation.

Rasterization pipeline The pipeline is depicted in Figure 7.10.

Figure 7.10. Rasterization
pipeline

Introduction to geometry

Suppose you have some points and want to interpolate them. The typi-
cal approach in graphics is with cubic hermite interpolation. The prob-
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lem setup is as follows: you are given h0 = P(0), h1 = P(1), h2 = P′(0),
and h3 = P′(1) (hence the choice of a cubic, since there are three pa-
rameters). Letting P(x) = ax3 + bx2 + cx + d, it is easy to check that

h0

h1

h2

h3

 =


0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0




a
b
c
d

.

In fact, this matrix is invertible:
a
b
c
d

 =


2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0




h0

h1

h2

h3

.

8 Geometry (02/08)

The lecture slides are here.

Last time, we discussed using cubics to interpolate between any two
points.

Catmull-Rom interpolation works similarly: suppose you have four
points, {(x, y)i}3

i=0. The algorithm works by interleaving, i.e. approx-
imate the slope at x1 by the secant between (x0, y0) and (x2, y2), and
likewise approximate the slope at x2 by the secant between (x1, y1) and
(x3, y3). Then for every two neighboring points, fit a cubic to their y
and dy

dx values.

The same principle works in Rn: just fit vectors instead of values. In
general, we can define interpolation in terms of basis functions for the
interpolation scheme:

p(t) =
n

∑
i=0

piFi(t).

For instance, we’ve already looked at the Hermite interpolation scheme
{Hi(t)} earlier; we will derive Ci(t) for Catmull-Rom and Bi(t) for
Bézier curves.

The inputs will be

h0 = p1, h1 = p2, h2 =
1
2
(p2 − p0), h3 =

1
2
(p3 − p1).

https://cs184.eecs.berkeley.edu/sp24/lecture/7/bezier-curves-and-surfaces
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To implement this, just use the same format,

P(t) =
[
t3 t2 t 1

]
H


0 1 0 0
0 0 1 0
− 1

2 0 1
2 0

0 − 1
2 0 1

2




p0

p1

p2

p3

,

where H denotes the Hermite interpolation matrix.

Our methods above have interpolated by forcing curves through the
data. In practice, this might not be a good choice because real-world
data is noisy. The idea of Bézier curves is to define some “control
points” p0:3 and define a curve that passes through p0 and p3 and define
the rest with tangent vectors t0 = 3(p1 − p0) and t1 = 3(p3 − p2).

Exercise 8.1. Derive the Bézier matrix.

Remark. In graphic design, the control points are the things you drag to
specify curves. To make smooth curves, you constrain control points to
be collinear with the vertex. To make sharp points, move them off the
line.

Figure 8.1. A computation graph
for the de Casteljau algorithm

The motivation for Bézier curves is given by the de Casteljau Algo-
rithm. Let

b1
0 = (1− t)b0 + tb1

b1
1 = (1− t)b1 + tb2

b2
0 = (1− t)b1

0 + tb1
1,

i.e. repeatedly take a point proportion t along the way from each seg-
ment until you can no longer do so (run linear interpolation in succes-
sion). Then the Bézier curve passes through it. This algorithm is much
more intuitive than the tangent line approach and generalizes easily to
an arbitrary number of points!
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The algorithm is effectively Pascal’s triangle; see Figure 8.1. We can
evaluate the Bernstein form of a Bézier curve of order n, namely

bn(t) = bn
0 (t) =

n

∑
j=0

bj

(
n
j

)
tj(1− t)n−j︸ ︷︷ ︸

Bn
j (t)

,

where bj are the control points.

Bézier curves work well in low dimensions, but in high dimensions
it becomes very hard to control (high-order polynomials become much
more sensitive to changes in coefficients, and naturally may be numer-
ically unstable from a user perspective). In practice, we like to chain
together may low-order Bezier curves.

Figure 8.2. Enforcing continuity
constraints on Bézier curves: C0,
C1, and C2 cases, respectively

Figure 8.3. C1 case

Figure 8.4. C2 case

Note. In the last remark, we said that the way to enforce C0 continuity
is to constrain points to match. To enforce C1 continuity is to constrain
points to collinear and equidistant from the vertex. To enforce C2 con-
tinuity, use an A-frame construction. See Figures 8.2 to 8.4.

Bézier curves satisfy the following useful properties:

• Affine transformations: you can transform the curve by transform-
ing the control points.

• Convex hull: the curve lies within the convex hull of the control
points.

Likewise, higher-dimensional surfaces can be approximated by com-
posing several Bézier surfaces, which we call patches. Now we will de-
rive this multivariate case. The idea is to just do the computation one
dimension at a time: produce Bézier curves in the x direction, and use
the resulting points as controls for the y direction. That is, just take the
outer product:

bm,n(u, v) =
n

∑
i=0

n

∑
j=0

bi,jBm
i (u)Bn

j (v).

9 Mesh Representations and Geometry Processing (02/13)

The lecture slides are here.

Last time, we discussed that we might be interested in upsampling,
downsampling, or regularizing a triangle mesh. In this lecture, we will
discuss representations of triangles that allow us to implement this.

In general, we will use an implementation according to Figure 9.1,
where we store the coordinates corresponding to each vertex, and the

https://cs184.eecs.berkeley.edu/sp24/lecture/8/mesh-processing-and-geometry-pro
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vertices corresponding to each triangle. This avoids redundant infor-
mation, and we can efficiently move a vertex and accordingly move its
containing triangles.

Figure 9.1. Indexing triangles

Topology and geometry are depicted in Figure 9.2. The geometry
refers to the shape of the object, while topology refers to the arrange-
ment of the triangles. In general, it is much easier for topology to gen-
eralize to different geometries: one idea to interpolate between two dif-
ferent geometries with the same topology is to linearly interpolate the
triangles.

Figure 9.2. Topology vs. geome-
try

For our purposes, a manifold is a surface that, when cut with a
sphere, always yields something topologically equivalent to a disk. See
Figure 9.3. Assuming that every surface we care about to be a mani-
fold, our algorithms become much cleaner. In particular, we can regard
them as polyhedra and apply similar intuition.

Figure 9.3. Definition of a mani-
fold

Furthermore, we will assume that we are dealing with orientable
structures. That is, each triangle can be assigned a consistent winding
order determining the front and back. For example, a polyhedron is
orientable, while a Möbius strip is not.

Typically, we care about the following data structures:
1 Triangle:
2 - Stores the vertices and neighboring triangles
3

4 Vertex:
5 - Stores the vertex’s location and incident triangles
6

7 Half-edge:
8 - Stores its "twin" half-edge, the "next" half-edge around the face, the

↪→ start vertex, the edge, and the face (see Figure 9.4)

Figure 9.4. Specifications for
Half-Edge

The benefit of this approach is that we can easily traverse edges
around a face, or edges around a vertex. By iterating, we can traverse a
mesh.

There are several kinds of base mesh editing operations, i.e. flip,
split, and collapse edges, where you just update every relevant pointer.
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These operations will be the basis for larger operations.

The idea for Loop subdivision is that for every triangle, split it into
four parts, and assign new vertex positions according to weights. For
vertices with degree n, assign weight

u =

3/16 n = 3

3/(8n) else

to each incident vertex and 1− nu to the new vertex.

Then, split each edge arbitrarily, and connect the edges. Finally, flip
each new edge incident to both a new and old vertex. See Figure 9.5.

Figure 9.5. Edge operations in
loop subdivision

Remark. In most meshes, every vertex will have degree 6. One can use
Euler’s formula to show that if a mesh is topologically equivalent to a
sphere, there must exist points with degree not equal to 6.

The Catmull–Clark algorithm does subdivision for quad meshes.
See the slides for more details; like Loop, there is no derivation on the
slides, so it is just a matter of implementation.

10 Meshes & Ray Tracing (02/15)

Mesh simplification

The lecture slides are here.

Last time, we talked about the basic mesh resampling functions:
splits for local upsampling, collapse for local downsampling, and flips
for local resampling. Our objective is to this on a larger scale, i.e. reduc-
ing the number of mesh elements while maintaining the overall shape.

Let’s quantify this. Let u =
[

x y z 1
]⊤

be a point in homoge-
neous coordinates and ax + by + cz + d = 0 be a plane parameterized

by v =
[

a b c d
]⊤

. The idea is that the signed distance between u

and the plane can be written as ax + by + cz + d = u⊤v, so the squared

https://cs184.eecs.berkeley.edu/sp24/lecture/8/mesh-processing-and-geometry-pro
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distance can be written as u⊤vv⊤u = u⊤Qu, where Q = vv⊤ is called the
quadric error matrix.

The quadric error at a vertex as a proxy for how much the local ge-
ometry differs from a simpler representation. In math, it is the sum of
the quadric distances to each adjacent triangle’s planes, or equivalently
the quadric distance that arises when the adjacent error matrices are
summed. Accordingly, a greedy algorithm to determine which edges
to collapse is to minimize the quadric error at the midpoint across all
edges. See Figure 10.1.

Figure 10.1. Quadric error algo-
rithm

Mesh regularization

It is often the case that with the greedy algorithm alone, we end up
with “bad” meshes. To fix this, we regularize, i.e. try to make our trian-
gles “round” (equilateral-like) rather than narrow. Some examples of
common conditions for a regular mesh are:

Figure 10.2. Centering vertices
• The interior of the circumcircle of any triangle contains no other ver-

tices (forces acute)

• Every vertex should have degree close to 6. (Flip edges until this is
the case.)

• Triangles might be unnecessarily irregular, e.g. Figure 10.2. To fix
this, just move each vertex to the average of its neighbors.

A remeshing algorithm combines all of these tricks.
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Algorithm 1. Isotropic remeshing algorithm
while true do

split edges with length > 4
3× the mean edge length

collapse edges with length < 4
5× the mean edge length

flip edges to improve vertex degree
center vertices

end while

Ray tracing

The lecture slides are here.

Our discussion on geometry has largely concerned representing ge-
ometric shapes. In graphics, we care about how we use the geometry to
produce images. In Figure 7.4, we indicated some desirable properties
of images. One property we haven’t discussed yet are shadows, among
other things.

The idea of ray tracing is to cast a ray per pixel and to check for shad-
ows by sending a ray to the light. The benefit of this approach over pre-
vious work because it enables a more generalizable approach to light.
For instance, we previously discussed z-buffer for rasterization. Here,
we can determine depth by marching along the ray, and this allows us
to determine the effects of specular reflection, refraction, and so on by
tracing rays recursively until you hit a non-mirror or upon hitting an
upper bound.

Example 10.1. To determine whether a ray hits a triangle, we will deter-
mine the ray’s intersection with the containing plane, then determine
whether the intersection is in the triangle using the method from home-
work 1.

Parameterize a ray by r(t) = o + td for t ≥ 0. Furthermore, we
parameterize a plane by its normal vector n and a point p′ on the plane.
The plane is then {p : (p− p′) · n = 0}. The intersection between the
ray and the plane occurs at

t =
(p′ − o) · n

d · n

if t ≥ 0, or does not exist otherwise.

Example 10.2. The same method is compatible with spheres, which
we can parameterize as

{
p : (p− c)2 − R2 = 0

}
. You’ll end up with

a quadratic in t, which could have {0, 1, 2} roots.

Example 10.3. We might have a surface {p : f (p) = 0}. As long as you
can solve for the roots of f efficiently, the same approach generalizes.

https://cs184.eecs.berkeley.edu/sp24/lecture/9/ray-tracing-and-acceleration-str
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Naively, ray tracing involves determining intersection points between
each ray and each triangle. An algorithm with complexity O(PT), where
P = # pixels is on the order of a million and T = # triangles is on the
order of a billion, is very slow, and we require acceleration to get this to
work well in practice.

One idea is to use bounding boxes: use a bounding box around tri-
angles. If a ray doesn’t intersect a box, then there is no need to check
any of the triangles inside the box. We can check intersections using
the algorithm in Figure 10.3: for axis-aligned boxes, compute the tmin

and tmax corresponding to each dimension, and take the max and min
respectively to get the desired values for the multi-dimensional box.

Figure 10.3. Intersection points
between ray and boxes

A naive approach is to use bounding boxes as a uniform grid. To
do this, check the first cell that the ray hits, then take the nearest inter-
section point among objects within that cell. Unfortunately this doesn’t
work: see Figure 10.4, where the ray hits the dark blue square, which
points to the circle on the right, when really we care about the one on
the left.

Figure 10.4. A problem with uni-
form grid cells

A more general approach is to use a hierarchical representation, where
a partition of the image can be represented as a tree structure (see Fig-
ure 10.5). In this class, we will discuss a specific algorithm for this,
KD-trees.

Figure 10.5. Spatial hierarchy

11 Ray Tracing & Radiometry and Photometry (02/20)

Ray Tracing and Acceleration

The lecture slides are here.

The premise of a KD tree is the hierarchical representation we dis-
cussed last time. The algorithm is to choose an axis to split on (typically

https://cs184.eecs.berkeley.edu/sp24/lecture/9/ray-tracing-and-acceleration-str
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we will alternate between x and y), and split on a plane along that axis
at the median of the corresponding points.

To make our data structure useful, we must specify an algorithm to
trace a ray. We illustrate the recursive step in Figure 11.2 and a demon-
stration of the algorithm in Figure 11.1. Intuitively, KD-trees trace the
ray by moving tmin and tmax down along the tree. If the ray does not
intersect the splitting plane, we can eliminate half of the space. Other-
wise, we need to check intersections for both sides of the tree.

Algorithm 2. Ray tracing with KD tree
function RAYTRACE(ray r, KD-Tree T)

if T is empty or r misses T.bbox then
return null

end if
if T is a leaf then

return INTERS ECTOBJECT S(r, T.objects)
end if
if r intersects T.splitting_plane then

near← T.left
far← T.right

else
near← T.right
far← T.left

end if
Pnear ← RAYTRACE(r, near)
Pfar ← RAYTRACE(r, far)
return CLOSER(Pnear, Pfar)

end function

Another approach is to use object partitions or bounding volume
hierarchies (BVH). (We’ll implement this for homework!) Instead of
partitioning spatially (i.e. partition your space into non-overlapping
regions), we are partitioning our set of objects into disjoint subsets of
objects. Analogously, while KD trees can result in objects in multiple
regions, BVH can result in overlapping bounding boxes.

The algorithm is conceptually simple: compute the bounding boxes
of each triangle, and recursively split into two subsets. This likewise
produces a tree structure, and you stop when there are a few objects in
each step. The pseudocode is shown in Figure 11.3.

Remark. It looks like we’re traversing the whole tree. In practice, this
is not the case: since we are partitioning spatially, only logarithmically
many elements will make it past the ray misses node.bbox line.
We do need to check both boxes, for the same reason as in Figure 10.4,
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Figure 11.1. KD tree algorithm
for ray tracing
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Figure 11.2. KD tree recursive
step

due to overlapping bounding boxes.

Figure 11.3. BVH pseudocode

In KD trees, we chose to split on the median. For BVH, we have to
decide on how to make a good split. For each node, its cost is

Ctrav + P(hit L) · CL + P(hit R) · CR,

where Ctrav is the cost of traversal1 and CL and CR are the costs of 1 In the example of KD trees, this might
be something like determining split
points, choosing which direction, push-
ing to stacks, etc.

traversing its left and right children.

Assuming a uniform prior, for convex A contained in convex B, we
can define

P(hit A | hit B) = SA/SB,

the ratio of the surface areas, and we can define C∗ as number of trian-
gles.

Remark. Ctrav is a constant. The base algorithm gives something like
Ctriangle/Ctrav ≈ 8, and an highly optimized algorithm gives something
like 1.5.
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Radiometry and Photometry

Now, we will move into the next part of the course on lighting and
materials. Previously, we handled this in a rather handwavy way, but
we’ll do the real thing now. Physics time!Figure 11.4. We get eclipses

on Earth because the sun and
moon have similar perceived
size, as quantified by solid angle
(xkcd.com/1276).

Physical processes covert energy into photos, which carry a small
amount of energy. A light bulb, for example, consumes some energy
which is released as heat, while a lot is released as photons. Exposure
is the energy of photos hitting an object. In graphics, we will generally
assume that light has “steady state” flow, i.e. it travels infinitely fast.

Definition 11.1. Radiant (luminous) energy Q is the energy of electro-
magnetic radiation in Joules.

Definition 11.2. Radiant (luminous) flux is the rate of energy over
time, Φ = dQ

dt , as measured in watts (lumens).

Photometry accounts for the impact of the human visual system V
(which we’ll discuss more later on in the color lectures). In general,
these quantities will vary over wavelength λ, and the flux we perceive
is given by

Φv =
∫ ∞

0
Φe(λ)V(λ)dλ.

Figure 11.5. Artichoke lamp

Definition 11.3. A circle has angle θ = ℓ/r, where the entire circle con-
sists of 2π radians. Likewise, a sphere has solid angle ω = A/r2, where
the entire circle consists of 4π steradians (sr). See Figure 11.4.

Exercise 11.4. We can verify that Ω =
∫

S2 dω = 4π.

Definition 11.5. The radiant (luminous) intensity is the power per unit
solid angle emitted by a point light source:

I(ω) =
dΦ
dω

,

in units of W/sr (lm/sr = cd = candela).22 Candela is an SI unit!

Example 11.6. Consider an isotropic point source (i.e. uniform inten-
sity). Then Φ = 4π I.

Remark. It’s possible to design light sources to match certain light dis-
tributions. See Figure 11.5.

12 Photometry & Monte Carlo Integration (02/22)

Radiometry and Photometry

The lecture slides are here.

https://xkcd.com/1276/
https://cs184.eecs.berkeley.edu/sp24/lecture/11/radiometry-and-photometry
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Definition 12.1. Irradiance (illuminance) is the power per unit area in-
cident on a surface point, E(x) = dΦ(x)

dA . The units are W/m2 (lm/m2 =

lux).

One approach of computing this is Lambert’s cosine law (see Sec-
tion 7), where in general E = Φ

A cos θ, where cos θ = l · n.

Remark. The Earth’s axis of rotation is around 23.5◦ off the vertical axis,
the cosine is lower in the winter than in summer — hence why we have
seasons.

As we discussed previously in the Blinn-Phong model (Section 7),
light emitting flux Φ in a uniform angular distribution will have E =

Φ/(4π).

Definition 12.2. The radiance (luminance) is the power emitted, re-
flected, transmitted, or received by a surface, per unnit solid angle, per
unit projected area. In math,

L(p, ω) =
d2Φ(p, ω)

dωdA cos θ
=

dE(p)
dω cos θ

The units are W/(sr ·m2) (cd/m2 = nit).

In general, the incident and exitant radiance functions on a point on
a surface are not necessarily equal, so we distinguish them as Li and Lo.

Consider a surface S. Then the flux per unit area on the surface can
be modeled as due to the incoming light from all directions:

E(p) =
∫

S
Li(p, ω) cos θdω,

where the cos θ is from Lambert’s law.

Example 12.3. We can compute the irradiance from a uniform hemi-
spherical light:

E(p) =
∫

H2
L cos θdω

= L
∫ 2π

0

∫ π/2

0
cos θ sin θdθdφ

= Lπ.

Remark. One way of measuring radiance is with a pinhole camera: mea-
sure the radiance for rays passing through the point at each point on the
back of a box.

If you do this with a sphere and collect the light field at every point,
you can compute views of an object at the center by tracing the rays
back to the corresponding points on the sphere.
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Monte Carlo integration

Typically, we approximate integrals via sampling. We did this for an-
tialiasing, for example, where we selected some points and took aver-
ages.

The motivation for using this approach instead of a numerical ap-
proximation (i.e. Riemann sums) is that the numerical error is relatively
lower as dimensionality increases. That is, getting a complete set of
samples for {1, . . . , n}d requires N = nd samples. Numerical integra-
tion scales with 1

n = N−1/d, while random sampling scales with N−1/2.
Furthermore, it works well with any general function, but it produces
noise.

Figure 12.1. Shadows with
Monte Carlo integration. Sam-
pling the light source is much
better than sampling one point,
which yields sharp shadows.

Suppose we have some true data distribution p(X), and we sample

Xi
iid∼ p, and would like to approximate

∫
X f (x)dx. The estimator is

given by

FN =
1
N

N

∑
i=1

f (Xi)

p(Xi)
.

Example 12.4. If p(x) = U(a, b), then FN = b−a
N ∑N

i=1 f (Xi). (This looks
familiar!)

The following claim provides that MC sampling is actually useful:

Claim 12.5. FN is unbiased.

Proof.

EXi∼p[FN ] =
1
N

N

∑
i=1

EXi∼p

[
f (Xi)

p(Xi)

]
=

1
N

N

∑
i=1

∫ f (xi)

p(xi)
p(xi)dxi =

∫
f (xi).

■

We know that the variance will decrease as N−1, so as we collect
more samples, our estimate gets better in probability.
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13 Monte Carlo integration & Global Illumination (02/27)

Monte Carlo integration

The lecture slides are here.

Last time, we talked about MC methods for approximating general
integrals. This time, we’ll discuss it in the context of graphics.

Figure 13.1. Noisy ray tracing

Example 13.1. Suppose we have a unit hemisphere and want to esti-
mate the irradiance. Recall that

E(p) =
∫

L(p, ω) cos θdω,

where θ is the angle between ω and the surface normal. We will esti-
mate Xi ∼ p(ω), where p(ω) = 1/(2π) uniformly, as

FN =
2π

N

N

∑
i=1

L(p, ωi) cos θi.

So for each point p, we will sample N directions and evaluate the in-
coming radiance L(p, ωi) from those directions.

The problem with this approach is that sampling ωi uniformly will
produce high-variance outputs; see Figure 13.1. The problem is that
the incoming radiance is zero for most directions in the scene. One idea
is to change the sampling distribution p (domain-specific), rather than
using a uniform prior, to produce better estimates for our integrals.

Figure 13.2. Sampling from a
light source

Example 13.2. One example of a prior might be only integrating over
the directions of light sources (see Figure 13.2). To implement this, one
would approximate

E(p) =
∫

A′
Lo(p′, ω′)V(p, p′)

cos θ cos θ′

∥p− p′∥2 ,

where Lo(p′, ω′) denotes the outgoing radiance from p′ at solid angle
ω′ (the direction towards p), and V(p, p′) is an indicator for whether p
is visible from p′.

We can approximate this integral by MC with a uniform prior over
A.

Remark. To draw samples X from a probability distribution with cdf
G, recall the technique discussed in CS 70. It is equivalent to sample
U ∼ U(0, 1) and take X = G−1(U).

For a discrete variable, we can evaluate this using binary search.

https://cs184.eecs.berkeley.edu/sp24/lecture/12/monte-carlo-integration
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Global illumination and path tracing

The lecture slides are here.

There’s lots of components of Figure 13.3 we’d like to implement,
and we already have all of the required tools. These include:

• Soft shadows (from the balls),

• Caustics (light passing through the glass ball and reflecting off vari-
ous surfaces),

• Inter-reflections (reflections from each surface to every other sur-
face).

Figure 13.3. Global illumination

We will concern ourselves with reflections, which are the processes
by which light incident on a surface leaves the same side without chang-
ing in frequency. We will represent this using a bidirectional reflectance
distribution function (BRDF), representing how much light is reflected
into each outgoing direction from each incoming direction. See Fig-
ure 13.4.

The idea is that we can compute

fr(ωi → ωr) =
dLr(ωr)

dEi(ωi)
=

dLr(ωr)

Li(ωi) cos θidωi
,

which has units 1/sr. Then we can evaluate the incoming irradiance as

Lr(p, ωr) =
∫

H2
fr(p, ωi → ωr)Li(p, ωi) cos θidωi, (1)

which we approximate with MC sampling.

Figure 13.4. BRDF

Looking back at our earlier stuff, we want to use importance sam-
pling here, too. Naively, we can do this over all light sources. But
observe that in (1), our setup is naturally recursive. This makes sense,
since we want light to reflect off lots of things. The following discussion
is from Kajiya [1986].

Let tr(p, ω) be a transport function, returning the first surface in-
tersection function in the scene along ray (p, ω). Observe invariance
along a ray: Lo((p′, ω),−ω) = Li(p, ω), where p′ = tr(p, ωi). (Intu-
itively, the outgoing radiance from a ray is the incoming radiance at its
destination.)

With this in mind, we will rewrite (1) in terms of the outgoing radi-
ance from every ray (p, ω), and derive a recursive formulation:

Lo(p, ωo) = Le(p, ωo) +
∫

H2
fr(p, ωi → ωo)Li(p, ωi) cos θidωi. (2)

https://cs184.eecs.berkeley.edu/sp24/lecture/13/global-illumination-and-path-tra
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To solve this, we will proceed via linear operators (recall Math 110!).
We will define the reflecion operator as

R(g)(p, ω) =
∫

H2
fr(p, ωi → ωo)g(p, ωi) cos θidωi,

so for example R(Li) = Lo. We will also let the transport operator be

T( f )(p, ω) = f (tr(p, ω),−ω),

so for example T(Lo) = Li.

Substituting into (2), we find that

Lo = Le + (R ◦ T)(Lo).

14 Light Transport & Materials (02/29)

Light transport

The lecture slides are here.

Last time, we found that

Lo = Le + (R ◦ T)(Lo) =: Le + K(Lo),

where R is the reflection operator, T is the transport operator, and K is
the full one-bounce light transport operator.

Thus, we can compute

Lo = (I − K)−1(Le) = Le + K(Le) + K2(Le) + · · · ,

where we enforce ∥K∥ ≤ 1 (a function norm; this has shown to be the
case in a variety of physical systems due to energy dissipation). Indeed,
this follows intuitively because Le is the originally emitted image, K is
the result of one bounce, K2 of two bounces, and so on.

Remark. The Blinn–Phong shading model is based on only one bounce.

Remark. Ambient light is highly dependent on the geometry of the
scene. It often needs a few bounces to work on diffuse surfaces, and
around 8–16 bounces for transparent or reflective ones.

So we have a way of representing this process algebraically, and it
remains to actually compute this efficiently. (Doing this function com-
position directly is expensive.) We can regard this bounce structure as
the integral over all ray paths, and our task is to find an unbiased esti-
mator.

https://cs184.eecs.berkeley.edu/sp24/lecture/13/global-illumination-and-path-tra
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Our first idea is to use Figure 14.1, where we just evaluate this infi-
nite sum directly via sampling. The problem, of course, is that there is
no base case in the recursion.

Figure 14.1. Idea 1: Naive MC
path sampling

So we will use Russian roulette sampling, where we will continue a
path with probability prr at each step. To make our estimate unbiased,
we let

Xrr =

X/prr w.p. prr

0 else.

(It is easy to verify that the expectations are the same.3)3 This looks like dropout!

The problem with this approach alone is that the distributions only
converge in expectation by LLN, and as a result there is high variance.

To fix this, we’ll partition this recursive radiance evaluation into two
steps:

• Direct lighting: importance sampling lights

• Indirect lighting: recursive with BRDF importance sampling.

Material modeling

The lecture slides are here.

The material properties of an object are given by microfacets. In
general, concentrated microfacets will give glossy surfaces (where we
regard glossy as materials that reflect high concentrations of specular
light), and spread-out microfacets will give diffuse surfaces. The idea
is to treat microfacets as mirrors, and model them accordingly.

https://cs184.eecs.berkeley.edu/sp24/lecture/14/material-modeling
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Figure 14.2. Idea 2.1: Path trac-
ing with Russian roulette
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Figure 14.3. Isotropic and
anisotropic materials

In general, we will model this using BRDFs. The formula is given by

f (i, o) =
F(i, h)G(i, o, h)D(h)

4(n · i)(n · o) ,

where:

• we are considering microfacets that reflect ωi to ωo, and let h =
i+o
∥i+o∥ be the half vector,

• the Fresnel reflection term F indicates that reflectance depends on
the incident angle and polarization of light,

• the shadow-masking term G is a binary indicator,

• and the distribution of normals D is a density function over vectors.

Figure 14.4. Rendering highly
specular materials

In practice, there are lots of complexities with modeling D. A naive
choice would be to take it as a (multivariate) Gaussian, but in many
cases this is not feasible:

• Anisotropic materials have directional surface normals, whereas isotropic
materials do not. See Figure 14.3.

• To provide a realistic model for surfaces, we also need to provide
a systematic method for “noising” our distributions (Gaussians are
overly smooth). See Figure 14.4.4,5 Indeed, we can follow this same4 Ling-Qi Yan, Miloš Hašan, Wenzel

Jakob, Jason Lawrence, Steve Marschner,
and Ravi Ramamoorthi. Rendering
glints on high-resolution normal-
mapped specular surfaces. ACM
Transactions on Graphics (TOG), 33(4):1–9,
2014
5 Ling-Qi Yan, Miloš Hašan, Steve
Marschner, and Ravi Ramamoor-
thi. Position-normal distributions
for efficient rendering of specular
microstructure. ACM Transactions on
Graphics (TOG), 35(4):1–9, 2016

approach in a variety of settings: a more concentrated distribution
can be useful for metallic flakes/sparkles, for example, whereas mod-
eling ocean waves needs a more continuous representation.

15 Material modeling & Cameras and Lenses (03/05)

Material modeling

The lecture slides are here.

A common task is modeling hair and fur. The original approach was
the Kajiya-Kay model6, which proposed modeling hair as cylinders6 J. T. Kajiya and T. L. Kay. Ren-

dering fur with three dimensional tex-
tures. SIGGRAPH Comput. Graph., 23
(3):271–280, jul 1989. ISSN 0097-8930.
DOI : 10.1145/74334.74361. URL https:
//doi.org/10.1145/74334.74361

and coloring them according to specular highlights. The Marschner
model7 corrects these by considering the transmission into multiple

7 Stephen R Marschner, Henrik Wann
Jensen, Mike Cammarano, Steve Worley,
and Pat Hanrahan. Light scattering from
human hair fibers. ACM Transactions on
Graphics (TOG), 22(3):780–791, 2003

cones, which accounts for direct reflection, transmission through the
fiber, and scattering within the fiber. See Figure 15.1.

Indeed, there are lots of ways in which light can interact with various
materials, e.g. smoke, fog, or water, as in Figure 15.2. This violates the

https://cs184.eecs.berkeley.edu/sp24/lecture/14/material-modeling
https://doi.org/10.1145/74334.74361
https://doi.org/10.1145/74334.74361
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assumption of BRDF, where a ray may exit an object at a different point
than it enters. To account for this, we use a BSSRDF as a function of four
parameters (xi, ωi, xo, ωo). Of course, running path tracing through ev-
ery material is computationally expensive, so we’ll want some way to
do this efficiently. (Out of scope for this class.)

Figure 15.1. Marschner model
for hair/fur interaction (R is re-
flection, T is transmission)

Remark. Most things are actually rendered translucently. For example,
skin and food have very rough textures, and modeling them translu-
cently enables a much smoother visualization.

Cameras and lenses

The lecture slides are here.

How are images actually captured from the world? Figure 15.3 shows
an example of an old-style camera. There’s lots of things going on, but
the most important component is that there are many (on the order of
10–15) lenses that collectively bring an image into focus on a plane.
The sensor accumulates irradiance during exposure. Pixels provide a
visual representation for this. We’ll look at image processing later; for
now, we’ll look at the optics.

Figure 15.2. Participating
medium

In a camera, we have a fixed sensor size h and hope to be able to vary
the focal length f . The relationship between these variables is shown in
Figure 15.4, where we can write

FOV = 2 arctan
(

h
2 f

)
.

Figure 15.3. Cross-section of a
camera

Example 15.1. There are lots of sensor sizes, depending on your cam-
era. A “medium format” corresponds to a sensor area of 22cm2, whereas
a smartphone will have a sensor area of around 0.15cm2.

Example 15.2. A common sensor size might be 36× 24mm, which is
commonly referred to as the 35mm-format film. There are many com-
mon focal lengths: 17mm is a wide angle at 104◦, 50mm is a “normal”
lens at 47◦, and 200mm is a telephoto lens at 12◦ (you’ll need this for
good pictures at a football game, for example).

https://cs184.eecs.berkeley.edu/sp24/lecture/15/cameras-and-lenses
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Figure 15.4. Focal length vs.
FOV

Figure 15.5. Perspective compo-
sition

From a photo, you can gauge the field of view. In general, if objects
in the back look small (e.g. fisheye), the FOV is large, while if they are
large, the FOV is small. This is just what you get with similar trian-
gles. This is useful for photo composition; recall Figure 5.3, for exam-
ple. From a photographer’s perspective, maintaining the same image
size means that the subject should occupy the same proportion of the
width of the image. See Figure 15.5 for example: using a tan x ≈ x
approximation for small x, we have to move a distance roughly pro-
portional to the focal length and zoom accordingly.

Remark. We can use this as tips for our own photography!

• The subject should be prominent, occupying around 1/3 of the im-
age.

• There should be a good perspective relationship (relative size) be-
tween the subject, foreground, and background. This requires mov-
ing physically or zooming in.

In general, perspective matters more than pixels! This works on a smart-
phone too.

Concept. Exposure = irradiance× time× gain, where:

• Irradiance is the power of light falling on image sensor pixel, and is
affected by factors like scene brightness or lens aperture (as given by
F-stops or lens iris control)

• Time is determined by the shutter opening and closing (as given by
the inverse of shutter speed)

• Gain is the amplification of sensor pixel values (ISO gain).
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The key is that since these factors are multiplicative, changing the ex-
posure corresponds to a logarithmic number of “stops” on the camera.

Note. ISO gain trades off sensitivity for noise; in general, we set the
gain to the lowest value that works to minimize the amount of noise.

Definition 15.3. The F-number of a lens is the quotient

focal length/diameter of aperture.

Some common F-numbers are shown in Figure 15.6, and incrementing
by 1 stop doubles the exposure.

The F-number is the maximum for that lens; you can stop down a
lens to a smaller aperture (larger F-number).

Figure 15.6. There are mul-
tiple combinations of apertures
and shutter speeds that yield the
same exposure (but different im-
ages)

Remark. Typically, cameras follow this procedure:

• Reset pixels to start exposure

• Reading out a pixel electronically ends the exposure

• Sensors are read out sequentially.

Figure 15.7. Rolling shutter ef-
fect

So it takes some time (up to 1/30 sec) to read out the entire sensor. If
we reset all pixels at the same time, then the last pixel will correspond
to a longer exposure, so in practice they are reset on a schedule.

This results in the rolling shutter artifact! Different parts of the image
correspond to different points in time. See Figure 15.7. The only “good”
fix for this is increasing the shutter speed, or using a global shutter
sensor.

16 Optics (03/07)

The lecture slides are here.

The key benefit of a lens is that it is able to focus objects well. First,
we will discuss an approximation to a thin lens in an ideal setting,
where all rays through an object will get focused on the same point
on a plane. As you ray trace different points on an object, you produce
an image. See Figure 16.1.

https://cs184.eecs.berkeley.edu/sp24/lecture/15/cameras-and-lenses
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Remark. In practice, our lenses are not ideal. In fact, Maxwell proved
that it is physically impossible. That is, for a rotationally symmetric
optical system, it is impossible to eliminate all primary aberrations for
all angles of incidence and wavelengths, since eliminating each type
of aberration results in conflicts. We can get around this problem by
having multiple lenses, which collectively approximate an ideal lens.

Figure 16.1. Under an approxi-
mation, an object is focused ex-
actly onto an image plane

In this setting, let f denote the focal length of the lens. We will de-
termine the relationship between the depths of the object and image,
which we denote zo and zi, respectively. Let ho and hi denote the heights
of the object and image, respectively. See Figure 16.2.

Figure 16.2. Deriving the thin
lens equation

By similar triangles, we have

ho

zo − f
=

hi
f

=⇒ ho

hi
=

zo − f
f

ho

f
=

hi
zi − f

=⇒ ho

hi
=

f
zi − f

.

Thus, (zo − f )(zi − f ) = f 2, or

1
f
=

1
zi

+
1
zo

.

The magnification is given by m = hi/ho = zi/zo by similar triangles.

Example 16.1. If you have a faraway object (e.g. a mountain a few miles
away), you can approximate zo ≈ ∞, and accordingly m ≈ 0. (As
expected! The mountain is much bigger than the image.)

Example 16.2. Suppose you want zi = zo. Then zi = 2 f by the thin lens
equation.

Remark. To increment focus linearly while maintaining the same-size
object in a photo, z should scale as n−1. (So for faraway objects, the
required change is tiny!)

Example 16.3. When you take an image containing a point light, it gets
blurred as a disc. We can compute the size of this disc: see Figure 16.3.
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It follows from similar triangles that

C
A

=
d′

zi
=
|zs − zi|

zi
.

This blurring kernel applies to all points with the same depth, but
point light sources are particularly obvious because a single point gets
mapped to a disc, whereas everything else gets interpolated and gets
smoothed out.

Example 16.4. Suppose you have a 50mm f/2 lens, which focuses at
1m. The background at 10m and foreground at 0.3m will naturally be
blurred, and we’d like to compute their respective circles of confusion.

We are given that f = 50mm and the aperture A = f /2 = 25mm.
Since the lens focuses at 1m, the sensor plane zs satisfies 1

50mm = 1
1000mm +

1
zs

, so zs ≈ 52.6mm. Then the background at 10m is mapped to a cir-
cle of confusion with diameter C = A|zs − zi|/zi ≈ 1.18mm, and the
foreground at 0.3m has C ≈ 3.1mm.

Figure 16.3. An object gets
mapped to an image, and points
on the focal plane get mapped to
the sensor plane

Definition 16.5. The depth of field for a lens is the range of depths for
which objects get mapped to a sharp image, as measured by the size of
the circle of confusion.

Figure 16.4. As in Example 16.4,
there are circles of confusion in
the foreground and background

The threshold for this size is typically 1 viewing pixel for an image
on the web. See Figure 16.5. The ideas are quite simple but the math is
messy.

Remark. If for some reason you have a view camera (i.e. your lens and
sensor planes are not parallel), your camera will need to satisfy the
Scheimpflug rule to keep your image sharp: your lens plane, image
plane, and subject plane must intersect along a common line.

Concept. Suppose we have a plane at depth zi, and want to evaluate
the pixel value at some point x′. To do this, integrate over points x′′



CS 184: COMPUTER GRAPHICS AND IMAGING · 42

Figure 16.5. Depth of field and
depth of focus

on the lens, and trace the rays to intersect at a point x′′′ with depth zo

as given by the thin lens equation. In practice, we approximate this
integral with Monte Carlo sampling, estimating the radiance on these
rays via path tracing.

Remark. Bokeh is the shape and quality of out-of-focus blur. For small,
out-of-focus lights, bokeh takes on the shape of the lens aperture.

17 Cameras and Lenses & Physical Simulation (03/12)

Cameras and Lenses

The lecture slides are here.

An algorithm for getting a pixel value is as follows:

• Sample N random positions in the pixel {x′}.

• For each position x′, choose a random position x′′ on the back of the
lens.

• Trace a ray from x′ to x′′ until it either misses an element or enters
the scene (then path trace through the scene).

• Weight each ray as

L(x′′ → x′)
cos θ′ cos θ′′

∥x′′ − x′∥2 .

Prof. Ng did a startup called Lytro, which captured 4D light fields
(i.e. the radiance flowing on every ray) rather than your typical 2D pho-
tographs (irradiance at every pixel on a plane).

Figure 17.1. 4D light field

https://cs184.eecs.berkeley.edu/sp24/lecture/15/cameras-and-lenses
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The idea is that you can consider points (x, y) on a focal plane and
consider their mapping (u, v) on the lens. A plenoptic camera just sam-
ples the light field, i.e. for each (x, y) they MC sample over all (u, v). To
get a pixel value, they equivalently sample over (x, y), so the portion of
the light field that is collected for a pixel is a grid cell in (x, y, u, v) space.
Equivalently, a plenoptic camera estimates the irradiance at each point
on the sensor, while a light field camera estimates the radiance along
all incoming rays. See Figure 17.1.

The idea of a light field camera is to capture this directly. At a sen-
sor level, they use microlenses, which appears directly on top of the
sensor in the camera. The benefit of this approach is that you can com-
putationally refocus, i.e. you can take one image and focus on lots of
different things. To do so, just move the sensor plane computationally
and ray-trace to the new plane. See Figure 17.2.

Figure 17.2. Tilted focal plane

Cameras have a microlens array between the color glass and CMOS
pixels. Light field cameras have different microlens and pixel arrange-
ments, plus some digital changes.

Physical Simulation

To generate the motion of objects in numerical simulation, we can use
kinematics. Considering the interactions of a large number of particles
or objects is more challenging, since there are lots of interesting interac-
tions between them.

We know from mechanics that

F = ks(b− a).

In real life, this would make for a spring that oscillates infinitely. To
account for damping, we can use

fa = −kd
b− a
∥b− a∥ (ḃ− ȧ) · b− a

∥b− a∥ .

Suppose we are simulating cloths, which could be either 10× 10 or
20× 20. Using the same spring constant to model them will make the
20 × 20 cloth harder to stretch proportionally, since more force is re-
quired to stretch it double the distance. To have the cloths satisfy the
same physical properties, we instead use a constant strain ε = ∆ℓ/ℓ0.

In practice, modeling with a straightforward grid pattern will have
problems with shearing. A fix is to follow the design in Figure 17.3,
where the red springs are much weaker than the blue ones, to avoid
directional bias.

Figure 17.3. Spring structure re-
sistant to shearing
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To update positions with kinematics, typically we use an Euler ap-
proximation, i.e. x(t + ∆t) = x(t) + ∆tẋ(t) and ẋ(t + ∆t) = ẋ(t) +
∆tẍ(t). This method often works poorly in practice due to numerical
instability, so some hacks to get it to converge better are:

• Adaptive step size: use some hybrid of ∆t and two ∆t/2’s.

• Momentum (implicit Euler), i.e. use the velocity and acceleration
from time t + ∆t.

• Verlet integration, i.e. use momentum and constrain the positions of
the particles to prevent instability. This results in some energy loss,
but can work quite well in practice.

18 Physical Simulation & Animation (03/14)

Physical Simulation

The lecture slides are here.

In general, you can model many dynamical systems as a collection
of particles that satisfy some properties. For example, you can model
a flock of birds as an ODE, where each bird is subject to attraction to
the center of its neighbors, repulsion from individual neighbors, and
alignment toward the average trajectories of its neighbors. The same
sort of thing works for crowds, water, and other large systems.

Another idea for cloths is to use finite element method.8 The idea is8 Here’s a Wikipedia page on it; looks
pretty cool! to solve PDEs by subdividing a system into smaller parts called finite

elements via constructing a mesh, then to solve this discretized system
with algebra. (In practice, one problem is that lots of triangles are re-
quired, and they may be nonuniform.)

Animation

There are lots of popular techniques for making animations visually
appealing and compelling.

Figure 18.1. Squash and stretch • Squash and stretch refer to the rigidity and mass of an object by
distorting its shape during a motion. The shape may change, but not
the volume. See Figure 18.1.

• Anticipation means preparation for a movement. For instance, when
throwing a punch, a person must first wind up.

https://cs184.eecs.berkeley.edu/sp24/lecture/17/physical-simulation
https://en.wikipedia.org/wiki/Finite_element_method
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• Staging should ensure that the audience is looking at the right place
and makes for a clear situation. Parts are often exaggerated.

• Follow through is motion blur, where often different components
move at different rates.

• Ease-in and ease-out means that motion shouldn’t start and stop
abruptly.

• Characters move in arcs, rather than straight lines.

• There are secondary actions, in which motion results from or com-
plements a primary action.

Typically, animation development follows a hierarchical structure,
where animators develop keyframes before filling in between them.
Ideally we’d like to automate the latter process, where we parameterize
the scene and interpolate between them, but in practice the keyframes
are too far apart to allow complex scenes to naively interpolate.

In general, this problem is pretty hard. Let’s consider the following
case: you have an arm consisting of N segments, which has some joint
angles. Based on those joint angles, you can determine the end effec-
tor’s position (forward kinematics). The problem at hand is to do the
opposite (inverse kinematics): how to recover the joint angles based
on end effector positions.

Example 18.1. Consider the N = 2 case. If your two links have lengths
ℓ1 and ℓ2 and relative angles θ1 and θ2, then you can parameterize the
location of the end effector as

(pz, px) = (ℓ1 cos θ1 + ℓ2 cos(θ1 + θ2)).

To make this useful, we will specify the location of the end effector and
determine the required joint angles:

θ2 = cos−1

(
p2

z + p2
x − ℓ2

1 − ℓ2
2

2ℓ1ℓ2

)

θ1 =
−pzℓ2 sin θ2 + px(ℓ1 + ℓ2 cos θ2)

pxℓ2 sin θ2 + pz(ℓ1 + ℓ2 cos θ2)

This is already pretty complicated!

Note. In general, solving this system is pretty hard, and it will almost
always be underconstrained. That is, it’s possible for there to be mul-
tiple continuous solutions, multiple discontinuous solutions, or no so-
lutions at all. People have worked on using learned models for inverse
kinematics to make motion appear natural.
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Now, suppose we’ve solved this problem, and we’d like to move on
to coming up with a parameterization that is well-suited for interpola-
tion, then actually creating a reasonable animation based on the joint
angles. (For example, we have lots of muscles on our bodies, and speci-
fying the amount of tension exerted by each one to make a single frame
is a lot of work.) Below are some common techniques:

Figure 18.2. Move surface along
with assigned handles

• Suppose we have a model for an object’s (e.g. a humanoid) motion,
and its joints are moving. Skinning this model will be pretty hard:
you can imagine that if it bends its arm, the inside of its elbow will
self-intersect, and the outside will have holes. The fix is to use blend-
ing, where you interpolate between the corresponding points on the
transformed links. A simple approach is to use linear blend skin-
ning, which is quite easy to implement.

Figure 18.3. Blending facial ex-
pressions

• Blending is a common way of handling facial expressions. You only
actually need to implement a few expressions, and everything else
can be achieved with linear interpolation.

• Rigging is a common way to augment a character with controls to
easily change its pose, create facial expressions, bulge muscles, etc.
Typically, this is sophisticated enough to operate in a UI, where you
can just drag dots and the overall mesh geometry will get updated.

Figure 18.4. Rigging

• Motion capture is a data-driven approach to creating animation se-
quences. The idea is to produce an animation by extracting pose as
a function of time from raw data, then mapping those poses onto a
character.

Figure 18.5. Motion capture

Common approaches are optical, magnetic, and mechanical. Among
these, optical is the most widely used, where each marker is triangu-
lated from multiple cameras. The main benefit is that motion is very
natural, but it may need touchup and is costly to set up.

19 Color Science (03/19)

The lecture slides are here.

Remark. Up to half of women have four color receptors rather than
three. (It’s X-linked.)

Example 19.1. In very rare cases, there exist subjects who have one
trichromatic eye and one deuteranopic eye. One might conduct a study
where a divider is placed between their eyes, and they can match one
rainbow to the other. In these cases, people have generally tuned to-
ward yellows and blues.

https://cs184.eecs.berkeley.edu/sp24/lecture/19/intro-to-color-science
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Example 19.2. Humans have unique color processing systems. One
example is shown in Figure 19.1, where the same blue filter is applied
to a banana or an entire scene. In the case of just the banana, it looks
very green or blue. In the case of the whole scene, it is very clearly
yellow.

Figure 19.1. The banana is the
same color in both photos

One approach is to apply automatic white balance, where you nor-
malize each channel independently. That is, if you have some input
(R′, G′, B′) and a white object (R′W , G′W , B′W), applyingR

G
B

 = diag
(

1
R′W

,
1

G′W
,

1
B′W

)R′

G′

B′


balances the color channels.

Example 19.3. But even this isn’t sufficient. In Figure 19.2, for example,
the squares labeled A and B have exactly the same RGB, even though
in the context of a checkerboard they look very different.

Example 19.4. See the slides for afterimages. Stare at the black dot for
some time, and without blinking, switch to the next slide. For a second
or so, you’ll see color mapped inversely to a grayscale image.

Figure 19.2. Adelson’s checker-
board

Figure 19.3. Watercolor illusion

Example 19.5. The watercolor illusion shows that human perception
implements floodfill. In Figure 19.3, the only change between the left
and right images is that the yellow border is applied. The fill looks
cream-colored, but really it’s white.

For now, our goal will be to reproduce colors. That is, from an array
of pixel values, how can we output those colors on an RGB display such
that a human will perceive it the same way?

Concept. Color is a phenomenon of human perception, not a universal
property of light.

Remark. From white light, you can produce a rainbow with a prism
(Newton first demonstrated this). You can’t further subdivide it.

Light has various wavelengths, with some subset on the visible elec-
tromagnetic spectrum, which ranges from red to blue (but not purple!).

20 Color Science (03/21)

The lecture slides are here.

https://cs184.eecs.berkeley.edu/sp24/lecture/19/intro-to-color-science
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Physical basis of color

A monochromator delivers light of a single wavelength from a light
source with broad spectrum. The idea is that a prism splits light into
different frequencies, so rotating the prism and tracking its output through
a slit will yield light of one frequency.

In general, we are interested in the spectral power distributions, which
model the “amount” of light present at each wavelength. Formally, the
units are W/nm; in practice, we tend to care about ratios, so often we
drop the units. Some examples are in Figure 20.2; there are many kinds
of “white” light, which possess different amounts of varying-frequency
lights.

Figure 20.1. Monochromator
Figure 20.2. Spectral power dis-
tribution

Remark. Spectral power distributions are additive. That is, if you have
two lights, the SPD of the lights collectively equals the sum of the SPDs
of the lights.

A simple model for light detectors is to assign a scalar value propor-
tional to the number of photons detected. This is quite lossy, since there
is no way to distinguish between light of different frequencies. But in
practice (e.g. in cameras or in human eyes), it is sufficient.

An easy way to do this is to let n(λ) be the number of incident pho-
tons as a function of wavelength, and p(λ) be the “detection efficiency.”
Then the total number of photos is

X =
∫

n(λ)p(λ)dλ.

We’ll do something similar for spectral power distributions:

X =
∫

s(λ)r(λ)dλ,
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where s(λ) is the input spectrum and r(λ) is the detector’s sensitivity.

Figure 20.3. Maxwell’s experi-
ment

Computationally, we will estimate this integral by discretizing it, i.e.
only take some finite set {λ}.

Example 20.1. Maxwell did a color-matching experiment. The idea is
that you have two annuli, one with adjustable RGB colors (just pieces
of paper) and black and white. The idea is that if you spin the handle
super fast, the colors blend, and you get humans to evaluate whether
the colors are the same.

The key discovery is that a very small number of primary lights is
required to capture a large range of colors.

Remark. There was lots of work circulating around at the time that in-
spired Maxwell to choose red, green, and blue, e.g. the Young–Helmholtz
theory (trichromatic color vision).

Figure 20.4. The dark red is out
of gamut of the primary colors

In some cases, you will need “negative” amounts of color for match-
ing, i.e. you need to add light of some frequency to the test side. See
Figure 20.4. You can think of a gamut as a nonnegative linear combina-
tion.

Note. Three colors is sufficient to cover every color. Two colors is insuf-
ficient for normal vision. But for people with red-green color-blindness,
two is enough.

Example 20.2. The CIE RGB color-matching experiment used specific
wavelengths of red, green, and blue, and tested on a monochromatic
light. We’ll define the required “amounts” of each color correspond-
ing to the wavelength λ as color matching functions, and compute the
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required weights of r(λ), g(λ), and b(λ) to match the desired distribu-
tion. (Thus, it’s possible for r, g, b to be negative.)

Biological basis of color

Figure 20.5. Retinal photorecep-
tor cells

The retina has rods and cones; see Figure 20.5. Rods are usually used
in very low light, and perceive only shades of gray. There are around
120 million rods in each eye. Cones are the primary receptors in typical
light levels, and there are around 6-7 million cones in the eye. There are
three kinds of cones with different spectral sensitivies.

Remark. There are no rods in the fovea. When you’re stargazing, you
are primarily using your rods, though, which is why people recom-
mend using an averted gaze.

The three types of cone cells are short, medium, and large wave-
lengths, with corresponding detector sensitivies rS, rM, and rL. Again,
we will discretize these, so that S

M
L

 =

 r⊤S
r⊤M
r⊤L

s.

As before, this representation is still lossy, but it is (as far as we know)
what happens in visual processing. Previously, mapping to one scalar
gave an ∞→ 1 dimensionality reduction, and now it is ∞→ 3.

This loss means that there are metamers, i.e. different spectra that
correspond to the same (S, M, L) response, or equivalently look the
same to a human. This is why our screens feel real, even though they
are just a layout of RGB pixels. 99 There are a lot fewer S cone cells than M

and L cells, which have very similar sen-
sitivity functions. The true distributions
are unknown, and they cannot be exactly
computed. They are just vision scientists’
best estimates.

In graphics, our goal is to choose RGB values for a display such that
the output color

sdisp(λ) := RsR(λ) + GsG(λ) + BsB(λ) =
(

sR sG sB

)R
G
B


matches the appearance of the target s(λ) in the real world.

Thus, S
M
L


disp

=

 S
M
L


real

=⇒

R
G
B

 =


 r⊤s

r⊤M
r⊤L

(sR sG sB

)
−1 r⊤S

r⊤M
r⊤L

s.

In some cases, we require negative colors, but this isn’t physically
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possible (they are just outside of our gamut). Figure 20.6 depicts the
spectral locus of human cone cells’ (S, M, L) response to monochro-
matic light. The space of all possible responses must be a linear combi-
nation of points on this curve.

Figure 20.6. Spectral locus in
LMS space

21 Color Science & Image Sensors (04/02)

Color Science

The lecture slides are here.

Generally, we will represent color spaces as a linear combination of
three colors. There are many possible color spaces (e.g. RGB, HSV), and
the same color will have different coordinates in each space.

The classical example is CIE XYZ, which provides luminance curves
X(λ), Y(λ), and Z(λ). Separating them just requires barycentric inter-
polation.

Figure 21.1. CIELAB is a
perceptually-organized color
space that aims for perceptual
uniformity. In CIE, the indicated
ellipses are perceived similarly
by humans.

Figure 21.2. HSV has three axes
corresponding to artistic charac-
teristics of colors.

Image Sensors

The lecture slides are here.

There were several key discoveries in producing sensors:

• Photoelectric effect: electrons are emitted due to incoming photons.

• Charge coupled devices (CCD): an initial imaging semiconductor
circuit. They are an array of linked capacitors, with pixels repre-
sented by MOS capacitors.

• CMOS is much more popular now in image sensors, along with a
vast array of other common electronics (microprocessors, microcon-
trollers, memory chips).

A CMOS sensor consists of many pixel sensor photodiodes. One
example is in Figure 21.3. It consists of the following components:

• Microlens: focus light onto the photodiode.

• Color filter: allow only one of {red, green, blue} to pass through.

• Reset transistor: reset the transistor to a known state before the ex-
posure period.

• Buses: (row) control line and (column) switch, allowing data to be
read out.

https://cs184.eecs.berkeley.edu/sp24/lecture/20/intro-to-color-science
https://cs184.eecs.berkeley.edu/sp24/lecture/21/image-sensors
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• Potential wall: a depletion region, where electron-“hole” pairs are
separated and stored as charge carriers. The depth determines the
full-well capacity of the photodiode.

There are lots of different possible color architectures. In general,
there are more green pixels because humans are more sensitive to green
light (as given by the luminous efficiency curve V(λ)).

Figure 21.3. Pixel photodiode

Now, given this color architecture, actual pixel values in images are
given by demosaicking algorithms, i.e. a way to interpolate between
pixels. (As a result of this, the majority of images we see are actually
made up!) A naive approach is just to lerp, but this results in some
noisiness; these days, we tend to use a convnet to do this instead.

Figure 21.4. Color architectures

Another approach is to use prismatic optics. One option is to use a
dichoric prism, as in Figure 21.5, to explicitly collect the RGB values at
each pixel with three independent sensors. Thus, no demosaicking is
required, at the cost of more (and smaller) sensors to maintain the same
resolution.

Figure 21.5. Internals of a di-
choric prism

In silicon, the photoelectric effect gives that the CMOS response func-
tion from photons to electrons is linear (though near 0 there is some
potential noise). In practice, however, real sensors saturate (due to the
description of the potential well we described above), and the signal
gets capped after some light density threshold. The result is something
we’ve all seen, e.g. in Figure 21.6.

Figure 21.6. Oversaturation

To fix this, there are two common approaches:

• Take multiple photos at different exposures. Then use Photoshop or
some other software to process the images after the fact.

• Use pixel mosaicking (the modern approach). These cameras are
higher-end, and can capture multiple exposures at once, then use
a learned model to merge this data (can be executed either on the
camera or externally).

Usually, around 50% of the board is actually covered with photodi-
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odes (this is known as the fill factor), and per-pixel microlenses handle
the rest.

22 Image sensors & Image processing (04/04)

Image sensors

The lecture slides are here.

In general, there are many sorts of noise that could impact an image.
Typically, we quantify it as

SNR =
mean pixel value

standard deviation of pixel value
=

µ

σ
.

(Alternatively, you might hear SNR being used in dB, i.e. 20 log10(µ/σ).)

We will provide an overview of these many sources of noise.

• Pixel structure and micro optics: One problem with lenses in a stan-
dard CMOS architecture is that light will enter one lens and exit at
another sensor, known as cross-talk (see Figure 22.1). The issue is
that since adjacent pixels have differently-colored lenses, colors will
become desaturated (see Figure 22.3).

Figure 22.1. Cross-talk

A fix is to use back-side illumination (see Figure 22.2), with the idea
to increase the amount of light captured and improve low-light per-
formance. The more traditional approach, front-side illumination, is
constructed in a fashion similar to the human eye.

Figure 22.2. Front- vs back- side
illumination

Figure 22.3. Desaturation

• Pixel aliasing: Pixels get aliased at the sensor level. Some of the pixel
board is dedicated to photodiodes, while some is non-photosensitive
circuitry (as we discussed, maybe around 50% of a board is actually
photoreceptors). This non-uniform sampling, particularly with color
filter array paterns, can cause aliasing. A fix is to use an optical low-
pass filter, where you can use two layers of birefrigerant material
oriented orthogonally such that you split each ray into 2 × 2 sub-
samples.

• Photon shot noise: This noise is unavoidable. It is given by the inde-
pendent arrivals of photons during an exposure, which can be mod-
eled by a Poisson distribution. In this case, SNR = µ/σ = λ/

√
λ =√

λ.

• The sensor itself has some noise too, due to physical limits and man-
ufacturing variation.

https://cs184.eecs.berkeley.edu/sp24/lecture/21/image-sensors
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– Dark current: Random thermal activity causes electrons to get
dislodged, which increases linearly with exposure time and ex-
ponentially with temperature.

– Electrons may leak into the well, with number proportional to ex-
posure time.

– Manufacturing variations are common in CMOS sensors, and re-
mains fixed with respect to other factors. Typically, these are han-
dled by accounting for this noise and subtracting it.

– Sensor values may be misread due to thermal noise. The most
common solution is cooling.

JPEG image processing

The lecture slides are here.

Step 1: Y’CbCr color space We rely on some image priors:

• Low-frequency content is predominant in most images.

• Humans are less sensitive to high-frequency sources of error and to
detail in chromaticity than in luminance.

So the idea is to use these as design choices to maximize compression.
The Y’CbCr color space has three channels: Y’ (luma/lightness), Cb
(blue-yellow), and Cr (red-green). In Figure 22.4, we see that these ob-
servations generally match, where downsampling in CbCr is much less
noticeable than downsampling in Y’.

Step 2: Downsampling Some common representations are as follows:

• 4:2:2 means retaining 2/3 of the values. Y’ is stored at full resolution
as usual, while Cb, Cr are stored at half resolution horizontally.

• 4:2:0 means retaining 1/2 of the values. Y’ is stored at full resolution
as usual, while Cb, Cr are stored at half resolution in both dimen-
sions.

(This step loses information.)

Step 3: Encode channel-wise Typically, this is implemented with a dis-
crete cosine transformation (DCT). That is, for each 8× 8 block of im-
age values,

https://cs184.eecs.berkeley.edu/sp24/lecture/22/image-processing


55 · IMAGE SENSORS & IMAGE PROCESSING (04/04)

(a) 4× 4 downsampled
Y’, full-resolution CbCr

(b) Full-resolution Y’,
4 × 4 downsampled
CbCr

(c) Original

Figure 22.4. Different mecha-
nisms for compression

Figure 22.5. Discrete cosine
transform

1. Project them onto the basis of 64 basis functions defined by

basis[i, j] = cos
(

π
i
N

(
x +

1
2

))
· cos

(
π

j
N

(
y +

1
2

))
for 0 ≤ i, j ≤ 7. These are visualized in Figure 22.5.

Remark. This approach often results in noticeable errors along block
boundaries, particularly across large color gradients, e.g. text. (But
low-frequency regions are usually represented pretty well.)

2. Now, we have a matrix of DCT coefficients. We floordivide it en-
trywise by a quantization matrix (which is just an 8× 8 matrix of
constants determined empirically from visual perception principles,
and assigns lower numbers [or, equivalently, higher weight] to lower
frequencies). Note that due to the floordivide, this process, called
quantization, produces small values for most coefficients on the or-
der of 6 bits, and zeros out most of them.

3. Now, we’d like to store these quantized DCT values, with the key
insight that most of them are zeros. We use the optimal encoding
under the information theory formulation. That is:

• Consider a reasonable reordering of these values. In our case, we
use diagonal zigzags. Referring back to Figure 22.5, this makes
some sense intuitively, since (i, j) along the same diagonal handle
roughly the same frequencies.

• Consider pairs given by the length of a run of zeros and the non-
zero value after the run ends.

• Encode these pairs with Huffman.

Filters

There are many ways to process an image. The simplest type is a con-
volution, where each output entry is a linear combination of the local
input. Table 22.1 lists some common examples.
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Table 22.1. Common image fil-
ters

Category Type Matrix

Blur 3× 3 box

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9


Blur Gaussian f (i, j) = 1

2πσ2 exp
(
− i2+j2

2σ2

)
(truncate)

Sharpen 3× 3

 0 −1 0
−1 5 −1
0 −1 0


Edge detection Horizontal Gx =

−1 0 1
−2 0 2
−1 0 1


Edge dtection Vertical Gy =

−1 −2 −1
0 0 0
1 2 1


Edge dtection Sobel

√
G2

x + G2
y (applied entrywise)

Since we are working with large images of size W × H and poten-
tially large filters of size N×N, one potential concern is runtime. There
are a couple of ways of handling this:

• Naive approach: Doing each of the adds and multiplies takes O(N2WH).

• Separable filters: A key benefit of the two blur filters is that they are
separable, i.e. they can be written as the product of two other filters.
The 3× 3 box blur can be written as

1
3

1
1
1

 · 1
3

[
1 1 1

]
,

and Gaussian blur can be written as

1√
2πσ2

exp
(
− i2

2σ2

)
· 1√

2πσ2
exp

(
− j2

2σ2

)
.

This works great because this approach runs in O(NWH) (with some
minimal memory overhead).

• Recall the convolution theorem (Theorem 3.3). Suppose our image
has size M×M, i.e. M = H = W, for simplicity. One can check that
the runtime is O(M2 log M) due to the overhead of FFT, compared
to O(N2M2) in the spatial domain. Thus, doing computations in the
frequency domain is better when the filter is large and worse when
the filter is small.
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23 Image processing & VR (04/09)

The lecture slides are here.

In some cases, it is beneficial to use data-dependent filters, which can
alleviate issues with outliers. Some examples are as follows:

• Median filter: Replace a pixel with the median of its neighbors. A
benefit is noise reduction, i.e. unlike Gaussian blur, one bright pixel
doesn’t bias a large region. In practice, however, it is quite inefficient,
since the filter is neither linear nor separable.

• Bilateral filter: Define

BF[I](x, y) = ∑
i,j

f (∥I(x− i, y− j)− I(x, y)∥)G(i, j)I(x− i, y− j),

where:

– The sum is over all i, j in the support of the Gaussian kernel,

– f (·) is a spatial weight term (e.g. a Gaussian or a distance thresh-
old),

– I is the original image,

– G is a Gaussian blur kernel.

That is, the weight is a function of the spatial distance and intensity
difference. Intuitively, pixels with color very far off from the target
pixel are probably on the opposite side of the edge, so their contri-
bution to the weighted sum should be small. See Figure 23.1.

Figure 23.1. Kernel depends on
image content

These days, we are more interested in using data-driven methods for
image synthesis. A canonical example in graphics is texture synthesis,
where we are given a low-resolution texture image and are asked to
produce a high-resolution texture that “looks like” the input.

Let’s formulate this more rigorously. Suppose we have a pixel p,
and let Np be the N × N neighborhood around p. Our objective is to

https://cs184.eecs.berkeley.edu/sp24/lecture/22/image-processing
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approximate the distribution for possible values of p, based on the rest
of its neighborhood. Here is an algorithm that has shown to work well
in simple settings:

• Take pixels p as the centers of the closest unsynthesized patches.

• To synthesize each p, find N× N patches
{

Nq
}

in the image that are
most similar to the patch Np containing p.

• Sample patches from
{

Nq
}

with weights given by d(Np, Nq).

The results are visualized in Figure 23.2.

Figure 23.2. Non-parametric tex-
ture synthesis

These days, we like to solve this problem with machine learning.
We know that a common way of learning useful representations is to
mask out some patches and learn to reconstruct them. This works much
better in general.

Virtual Reality

The lecture slides are here.

Virtual reality immerses a user completely in a virtual world, whereas
augmented reality is a display that augments the user’s normal view of
the real world. Mixed reality is a blend of VR and AR. The typical ap-
proach now (e.g. Apple Vision Pro) is pass-through, i.e. overlay things
on top of camera views.

VR Displays

What should physical VR displays support? The physical displays con-
sist of multiple components.

• Regular 2D camera views have windowed FOV, whereas VR/AR
displays provide 360◦ FOV. Your head’s orientation is tracked phys-
ically, and your rendered view is synchronized in real time.

• The panels are designed to provide 3D cues: z-buffer, lighting cal-
culations, occlusion, perspective, lens calculations, and so on. They
also handle user motion and different views from the left and right
eyes.

Figure 23.3. FOV for human vi-
sion

• The Oculus Quest 2 headset, for instance, supports a fan, 4 high-
performance cores, 4 low-performance cores, image and digital sig-
nal processors, a GPU that can run a 3k× 3k display at 90Hz (but the
actual headset only has 7M pixels), and can process input streams

https://cs184.eecs.berkeley.edu/sp24/lecture/23/virtual-reality
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from 7 cameras for motion tracking and gesture recognition. A ton
of stuff gets packed into this small product to make everything pos-
sible!

• The eyepiece lenses are designed to (i) create a wide FOV and (ii) cre-
ate a focal plane several meters away (for our purposes, at infinity).
The point of the latter is that parallel lines reaching the eye should
converge on the display at the same point, similarly to what is done
on an actual eye.

How many pixels do we need? Much like the displays for our other
devices, VR displays that mimic human vision must satisfy properties
driven by aspects of human perception.

• Colors must be reproduced as usual.

• Humans have around 160◦ FOV in each eye, or around 200◦ with
both eyes collectively (before accounting for the eye’s ability to move
in the socket). See Figure 23.3.

• From the FOV, you can compute the required resolution. Humans
can discern changes up to half an arc-minute (1/120 degrees) due to
the distance between any two adjacent photoreceptors; by compar-
ison, letters in the 20/20 vision chart occupy around 5 arc-minutes.
Given the FOV determined in Figure 23.3, we can find that the re-
quired resolution is around 8k× 8k.

In practice, however, this is quite expensive. The HTC Vive Pro 2
uses an FOV of around 100◦ per eye, 2448 × 2448 pixel display, and
about 24 pixels per degree (rather than around the 60 required to match
20/20 vision).

What to display? This is a rather challenging problem, since humans
have two eyes, which produce different views.

• Naturally, simply superimposing the images will produce double-
images. This is expected behavior! If you put your finger in front of
your face, focusing on your finger (for most people) produces two
background images, and vice-versa.

Humans’ focusing on particular targets is known as vergence. They
will rotate physically in their sockets to bring closer and further ob-
jects into physical alignment on the retina.

Anatomically, our eyes depend on several muscles to accomplish
verging (rotation to focus on target angles) and accommodation (fo-
cusing on target distances).
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– Verging is achieved with extraocular muscles (which look like
strings pulling around the eyeball), and requires oculomotor cues.
This is performed passively, to ensure that the projection of the
object is centered on the retina.

– Accommodation is achieved with ciliary muscles (which look like
strings pulling on the sides of the eyeball); muscle contractions
cause the lenses to increase in curvature and enable focusing on
nearby objects, and relaxing does the opposite.

• With this in mind, designing a reasonable VR display is challenging.
Users’ eyes must remain accommodated to far distances, but the eyes
must converge to fuse stereoscopic images of objects up close. This
leads to conflicting depth cues, which causes fatigue and nausea.

Remark. This problem is resolved if you can just directly emit the light
field that would be produced by a virtual scene.

Remark. As you age, the proteins in your eyeballs harden at a constant
rate: you begin with 80 diopters (unit with dimensions m−1) and lose
around 2 diopters per year. By the time you’re 40, your vision cannot
accommodate small focal distances, which is why you’ll need reading
glasses.

24 Virtual Reality (04/09)

Accounting for motion

Following our discussion from last time, an additional issue we must
resolve is tracking the user’s motions. The approaches outlined below
are depicted in ??.

Figure 24.1. Google cardboard

Example 24.1. Google cardboard uses gyro and a rear facing camera to
estimate the user’s viewpoint. Generally, tracking 2D rotation this way
works pretty well, but 3D rotation doesn’t.

Figure 24.2. Environment-
supported vision-based tracking

Example 24.2. Figure 24.2 shows an early VR test room at Valve, where
markers similar to QR codes are positioned throughout the environ-
ment.

Example 24.3. Oculus rift IR LED tracking has an external 60Hz cam-
era, which consists of an IR filter, camera lens, and CMOS sensor. The
photo in Figure 24.3 is taken with an IR-sensitive camera (it doesn’t look
like that to us). It implements active optical motion capture, where
each LED marker emits a unique blinking pattern, resolving some am-
biguities. The downside is that there is inevitably some lag.
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Suppose you have:

• The relative positions of the 3D markers on the headset. Due to ac-
tive tracking, these are known constants.

• The camera viewpoint (a 4× 4 projective mapping from 3D to 2D).
Due to the camera remaining in place while the headset is in use, this
is also a constant.

• Each frame provides a 2D position of each headset marker in an im-
age.

Now, we’d like to solve for the head pose, which has 6 degrees of free-
dom (3 for position, 3 for direction). This is pretty easy: just use least-
squares.

Figure 24.3. Oculus rift IR LED
tracking hardware

Remark. This is in contrast to passive optical motion capture, which
we discussed in our animation lecture (Section 18). The downside of
passive tracking is that you need multiple cameras to handle occlusions
(and who wants to buy those?).

Example 24.4. Figure 24.4 depicts HTC Vive’s tracking system. As with
Oculus, the headset and controller are covered with IR photodiodes.
The light emitter is an array of LEDs along with two spinning wheels
with lasers. During each frame, the lighthouse emits an LED pulse,
horizontal laser sweep, LED pulse, and vertical laser sweep. The pho-
todiode measures the time offset between the LED pulse and the laser
arrival, which determines the x and y offset in the lighthouse’s field of
view. So in some sense, the lighthouse acts as a virtual camera.

Example 24.5. Nowadays, the external camera is too clunky, and we
tend to use “inside-out” tracking. Wide angle cameras look outward
from the headset, and we use SLAM to estimate the 3D structure of the
world and the position and orientation of the viewer, along with the
position and orientation of the controllers (which, in the case of Meta
Quest 2, also have infrared LEDs to help with tracking).

Rendering challenges

The previous section tackled the problem of the camera view changing.
We also need to handle the problem of doing rendering well, in terms
of correctness and speed.
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Figure 24.4. HTC Vive tracking
system

Example 24.6. VR headsets require wide FOV. As a result, the lens in-
troduces distortion, namely pincushion distortion due to the shape of
the lens and chromatic aberration due to different wavelengths of light
refracting by different amounts. See Figure 24.5. Fixing this turns out
to be pretty easy. For pincushion, just do the usual interpolation we
need for putting a texture on a mesh. For chromatic aberration, you
can use separate distortions for each channel R, G, B to get a decent
approximation.

Figure 24.5. View of checker-
board through Oculus Rift lens

Example 24.7. Projecting things onto planes doesn’t quite work, since
objects in the periphery will get stretched (pixels span a larger angle in
the center of the image). Some solutions have included curved displays,
adjusted ray casting, and rendering scenes with four viewports with
distinct projection matrices (see Figure 24.6).

Figure 24.6. Lens-matched shad-
ing

Example 24.8. Arguably the most difficult challenge with VR is opti-
mizing end-to-end latency, i.e. the time from moving your head to new
photons arriving at your eyes, which includes updating head move-
ment, camera position, rendering the new image, transferring it to the
headset, and displaying it. Ideally, a VR system will accomplish all of
these, end-to-end, in 10-25ms.

Consider the following case study: Suppose we have a 2k× 2k dis-
play spanning 100◦ FOV. If you move your head 90◦ in one second (a
fairly reasonable speed), and your end-to-end latency is 33ms, then the
displayed image is off by around 60 pixels, or 3◦, from the ground truth
with zero latency.

This problem can be alleviated with foveated rendering, i.e. we al-
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locate our resources to where they’re most useful. The eye can only
perceive detail in a ∼ 5◦ region about the gaze point, which enables
us to focus our compute on a very small region. The practical imple-
mentation turns out to be quite simple: just maintain three images (one
high-res, one medium-res, and one low-res), and blend them for the
display.

Example 24.9. Suppose a user’s eye is moving to track a moving ob-
ject.10 That is, the eye is moving continuously relative to the display, 10 To actually implement this, add

inward-facing cameras to image the
eyes and face. One line of work here
is enabling VR teleconference, which
requires detecting gaze points for UIs
and facial expressions.

as shown in Figure 24.7. The problem is that the image lags behind the
eye motion, which results in judder. There are two solutions to this:

• Increase the frame rate. This can be costly.

• Use a low-persistence display. That is, the pixels should only emit
light for a small fraction of the frame. If this flickering occurs at a
rate higher than around 60Hz, it is imperceptible to the human eye.
Oculus DK2 OLED does this: their 75Hz frame rate means that each
frame lasts around 13ms, and the pixel persistence is only around
2-3ms.

Figure 24.7. Eye moving to track
moving object

Example 24.10. Producing high-quality renderings is hard, and increas-
ing the latency will cause motion sickness. Reprojection aims to mit-
igate this problem. The GPU renders a new frame as usual, using the
latest position/orientation data. In parallel, motion tracking continues,
and if the frame is not generated in time, the most recently rendered
frame is reprojected, warped to match the current head position and
orientation, and displayed. After the next frame is rendered, it is dis-
played.
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Imaging

There have been lots of problems with naively stitching together views
from multiple cameras. In particular, doing this with two spherical
cameras is pretty hard. Suppose your two cameras are a distance b
apart (called a baseline). Then they both rotate by angle θ. Now they
are effectively distance b cos θ apart. Furthermore, one camera is in
view of the other, causing occlusion.

There have been lots of attempts to hack this problem. The natural
solution to incorrect baselines is to spin the cameras around a circle,
rather than fixing their positions. With this in mind, you might as well
rotate them all the way around the circle to produce panoramic views,
i.e. create an omni-directional stereo representation.

Now, to get the two desired views back, project this panoramic view
onto the inside of a virtual sphere, and render the left and right eye
viewpoints independently with corrections for distortions and chro-
matic aberration.

Figure 24.8. Left and right views

This approach works pretty well (see Figure 24.8)! This represen-
tation is only an approximation, however; straight lines may appear
slightly curve, and vertical disparities for close objects may be wrong.

Example 24.11. A specific case of moving-viewpoint imaging is with
4D light fields. Suppose we’d like a camera to capture views sufficiently
densely such that we can capture depth well. That is, consider the fol-
lowing arrangement: a camera and two points at depths zn = 0.3m and
z f = 0.6m are collinear. If you consider the view ∆x to the right of the
center of the camera, you should be able to distinguish the close and far
features.

Previously, we saw that 20/20 vision requires that θ ≈ (1/60)◦. In
this case, we require ∆x ≈ (1/1719)ft, or millions of views per square
foot. Current VR devices allow for θ ≈ (1/10)◦, or ∆x ≈ (1/286)ft, or
under a hundred thousand views per square foot.

Multi-camera arrays and plenoptic cameras are much worse at this,
allowing on the order of 100 views.

Recently, work on NeRF has allowed for novel view interpolation:
sparsely sample images of a scene, and get out new views of the same
scene. But it is still much too slow to be of use for VR. There is a lot of
work to be done here!
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