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Figure 1: States, observations, and actions in RL.

1 Introduction and Course Overview (08/23)

This lecture was an overview of the course and RL. The notes are here.

2 Imitation Learning (08/28)

The videos begin here.

Notation

• st = state

• ot = observation [possible to infer this from state, but sometimes not vice-versa]

• at = action

• πθ(at | ot) = policy [a distribution of actions over a particular observation]

• πθ(at | st) = policy (fully observed)

What is imitation learning?

Example 2.1. Consider automatic driving, where you are given some pixels and want to determine
whether to go left or right. You can provide some training data from a human and run supervised
learning, i.e. behavioral cloning.

In general, this fails: supervised learning can produce small mistakes, and over time, the expected
trajectory will continue to deviate farther from the training trajectory (the distributional shift
problem). Specifically, we train under pdata(ot), and our supervised learning approach computes

max
θ

Eot∼pdata(ot)[log πθ(at | ot)].

However, we test under pπθ
(ot).

It is possible to address this by being smart about how we collect and augment our data (in this
example, adding left- and right-facing cameras allowed for the introduction of states the model is
familiar with), as well as improving our models. Other methods include using multi-task learning
and changing the algorithm entirely.
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Behavioral cloning

We use the latter approach by clarifying more precisely what we want. A learned policy is good if
it chooses the best action most often. Accordingly, define

c(st, at) = 1{at = π∗(st)}.

Our goal is
min

θ
Est∼pπθ

(st)[c(st, at)].

Proposition 2.2. Assume that πθ(a ̸= π∗(s) | s) ≤ ε for s ∼ ptrain(s). Then

max
θ

T

∑
t=1

Epθ(st)[ct] ∈ Θ(εT2).

The equality case occurs for, say a tightrope walker, where any mistake immediately results in
failure of the task. In reality, we can often recover from mistakes, so the analysis above may be a
bit pessimistic. But it’s still not good—we want the worst-case cost to scale linearly.

Addressing the problem in practice

• Collecting and augmenting data [often works well but requires domain-specific expertise]

– Clever data collection

* Example: for drone-flying through nature, strap some cameras to a person and
have them walk, assuming that their head movements match the “correct” drone
trajectory

– Intentionally add mistakes and corrections

– Add some fake data that illustrates corrections (e.g. side-facing cameras)

• Using more powerful models

– Non-Markovian behavior: RL produces πθ(at | ot), so receiving the same observation
will result in the same policy. Humans make decisions based on o1, . . . , ot. However,
we can use a sequence model (e.g. transformer, LSTM) to observe the whole history.

* Can work poorly due to causal confusion: for instance, pedestrians may cause you
to break. The brake indicator lights up when braking. So the model may think that
it is good to brake when the indicator is on, not when there is a pedestrian.

– Multimodal behavior: you want to navigate around a tree, and can go either left or
right. They average out to the middle.

* Expressive continuous distributions

· Mixture of Gaussians: take π(a | o) = ∑i wiN (µi, Σi), and train to compute
w1, µ1, Σ1, . . . , wN , µN , ΣN .

· Latent variable models: you don’t know what N is for mixed Gaussians. Pro-
vide a “seed” ξ ∼ N (0, I). The most widely used type of model of this sort is
the conditional variational autoencoder.

5
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· Diffusion models: denote the training image as p0(x0). Let noise = f (xi) =

xi−1 − xi. Learn f (xi).

This is generalizable to RL. Let at,0 be the true action, and let noise = f (st, at,i) :=
at,i+1 − at,i, and learn f .

• Discretization: discretize one dimension at a time.

– Autoregressive discretization: use LSTM or transformer.

Goal-conditioned behavioral cloning

In some cases, it is easier to train for multiple classes than it is for one. The idea of goal-conditioned
behavioral cloning is that any trajectory will take you to some state, and we can treat that trajectory
as “good” for reaching that state. Naively, training to reach a particular goal can work, but you get
much less training data because much fewer trajectories end up at the desired state(s). Formally,
suppose you have several demonstrations indexed by i,{

si
1, ai

1, . . . , si
T−1, ai

T−1, si
T

}
.

Then the objective is to maximize log πθ(ai
t | si

t, g = si
T).

Exercise 2.3. There are two sources of distributional shift. The first is the same as before, where
the distributions of states are distinct in the training and true trajectories. What is the second?

Example 2.4. Lynch et al. [23] taught a robot how to play with objects at a desk. This is pretty hard
because any state-action pair could be pretty reasonable. Goal-conditioned training allowed it to
reach specific goals.

Example 2.5. It is possible to go beyond just imitation, e.g. Ghosh et al. [9]. The following proce-
dure iterates supervised learning and benefits from its own experience:

• Start with a random policy

• Collect data with random goals

• Treat this data as “demonstrations” for the goals that were reached

• Improve the policy

• Repeat

Example 2.6. It is possible to use goal-conditioning at scale, i.e. generalizing to new but similar
tasks. For instance, Shah et al. [33] enables a variety of robots to navigate due to the use of training
data spanning a large range of vehicles.

DAgger

Let’s go about algorithmically improving behavioral cloning. Recall that the distributional shift
issue is that pπθ

(ot) ̸= pdata(ot). So our idea is to collect training data from pπθ
(ot) directly by just

running πθ(at | ot).

Eventually, this will converge such that the distribution of observations in the dataset will ap-
proach the distribution of observations that the policy sees when it runs. The labeled actions
might be suboptimal, but eventually the dataset is dominated by samples from the correct pθ .

6
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Algorithm 1 Dataset Agg(er)gation

1: for i← 1 to K do
2: Train πθ(at | ot) from human data D = {o1, a1, . . . , oN , aN}
3: Run πθ(at | ot) to get dataset Dπ = {o1, . . . , oM}
4: Ask human to label Dπ with actions at

5: Aggregate: D ← D ∪Dπ

6: end for

A shortcoming of DAgger is that line 4 isn’t what you want an agent do in real life: a car will not
make decisions instantaneously at every timestep, it should have reaction time and other more
natural characteristics. There exist some improvements on this aspect of DAgger.

Proposition 2.7. Given the same conditions as Proposition 2.2, the cost scales linearly with T.

What’s wrong with imitation learning?

• Humans need to provide data.

• Humans aren’t good at providing some kinds of actions: if you want to make a robotic spider
to walk, domain-specific knowledge is required.

• Theoretically, RL should be able to outperform humans. (That’s the whole point!)

3 PyTorch Tutorial (08/30)

The notes are here.

Tensor operations

• Indexing (what do ..., -1, and None mean)

• squeeze, permute, view

Note. Be careful with view! Only do one dimension at a time, and use assert before and after.

Utils

1 device = None

2

3 def init_gpu(use_gpu=True, gpu_id=0):

4 global device

5 if torch.cuda.is_available() and use_gpu:

6 device = torch.device("cuda:" + str(gpu_id))

7 print("Using GPU id {}".format(gpu_id))

8 else:

9 device = torch.device("cpu")

10 print("GPU not detected. Defaulting to CPU.")

11

12 def set_device(gpu_id):

13 torch.cuda.set_device(gpu_id)

14

7
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15 def from_numpy(*args, **kwargs):

16 return torch.from_numpy(*args, **kwargs).float().to(device)

17

18 def to_numpy(tensor):

19 return tensor.to(’cpu’).detach().numpy()

Custom networks

1 import torch.nn as nn

2

3 class SingleLayer(nn.Module):

4 def __init__(self, in_dim, out_dim, hidden_dim):

5 super().__init__()

6 self.net = nn.Sequential(

7 nn.Module(in_dim, hidden_dim),

8 nn.ReLu(),

9 nn.Module(hidden_dim, out_dim)

10 )

11

12 def forward(self, x: torch.Tensor) -> torch.Tensor():

13 return self.net(x)

14

15 batch_size = 256

16 net = SingleLayer(2, 32, 1).to(device)

17 output = net(torch.randn(size=(batch_size, 2)).to(device))

Training loop

1 net = (...).to(device)

2 dataset = ...

3 dataloader = ...

4 optimizer = ...

5 loss_fn = ...

6 for epoch in range(num_epochs):

7 net.train()

8 for data, target in dataloader:

9 data = from_numpy(data)

10 target = from_numpy(target)

11

12 pred = net(data)

13 loss = loss_fn(pred, target)

14

15 optimizer.zero_grad()

16 loss.backward()

17 optimizer.step()

18

19 net.eval()

20 # do evaluation

4 Introduction to Reinforcement Learning (09/04)

Imitation learning doesn’t perform well in practice because we don’t always have expert data,
which is often hard to collect or requires domain-specific expertise. Thus, we want a more gener-
alizable framework.

8
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Figure 2: Reinforcement learning

Notation and Terminology

Review last lecture for states, actions, etc. r(s, a) is a reward function.

Definition 4.1. A Markov chainM = {S , T } is a state space and transition operator. In particular,
if we T as a matrix, Ti,j := p(st+1 = i | st = j), and µt is a vector of probabilities, then µt+1 = T µt.

Definition 4.2. A partially observed Markov decision processM = {S ,A,O, T , E , r} has:

• S = state space

• A = action space

• O = observation space

• T = transition operator

• E = emission probability p(ot | st)

• r = reward function; r : S ×A → R

Concept 4.3. The reinforcement learning “pipeline” is shown in Figure 2. Typically, a policy
πθ(· | s) is a neural net accepting s as input with parameters given by θ, and probabilistically
produces an action a. Then the next state s′ ∼ p(· | s, a).

Thus, for trajectory τ = (s1, a1, . . . , sT, aT), we have

pθ(τ) = p(s1)
T

∏
t=1

πθ(at | st)p(st+1 | st, at). (1)

Our objective is to compute

θ∗ = arg max
θ

Eτ∼pθ

[
T

∑
t=1

r(st, at)

]
. (2)

Observe that in (1), the term in the product can be rewritten as p((st+1, at+1) | (st, at)), i.e. model
this as a Markov chain with states given by (st, at). In particular, by linearity of expectation, we
can rewrite the objective (2)

θ∗ = arg max
θ

T

∑
t=1

E(st,at)∼pθ
[r(st, at)].

9
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Figure 3: The anatomy of your typical RL algorithm.

For T = ∞, the idea is that there exists a stationary distribution µ = pθ(s, a), so setting

θ∗ = arg max
θ

1
T

T

∑
t=1

E(st,at)∼pθ
[r(st, at)]→ E(s,a)∼pθ

[r(s, a)]

suffices.

Example 4.4. The nice thing about this setup is that this works even when r is not smooth. For
instance, suppose you are driving a car, and at each timestep get a reward of +1 if you stay on the
road and −1 if you drive off. Then πθ(a = drive off) = θ yields Eπθ

[r] smooth in θ, despite r itself
not being smooth.

Reinforcement Learning Algorithms

Virtually all RL algorithms will look like Figure 3. Throughout these notes, we’ll refer to the
“green box” and “blue box” in the figure. One example for the green box is learning fφ such that
st+1 ≈ fφ(st, at) in a neural net, and a corresponding blue box is running backprop through fφ

and r, and training πθ(st) = at.

Computational cost can vary significantly based on the case you’re working with:

• If you’re using a real robot, generating samples will take much longer than in a MuJoCo
simulator.

• Learning a model for st ≈ fφ(st, at) is much more expensive than estimating the return as
the expected sum of rewards.

• In the last bullet, training πθ in the former is much more costly than running gradient descent
on the latter.

Value Functions

Definition 4.5. Qπ(st, at) = ∑T
t′=t Eπθ

[r(st′ , at′ | st, at] is the total reward from taking at at state st.

10
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Definition 4.6. Vπ(st) = ∑T
t′=t Eπθ

[r(st′ , at′) | st] = Eat∼π(·|st)[Q
π(st, at)] is the total reward from

st.

Idea 4.7. Es1∼p[Vπ(s1)] is the RL objective.

Typically, reinforcement learning algorithms based on Q-functions will take one of two forms:

• If you have a policy π and know Qπ(s, a), then we can improve π by setting π′(a∗ | s) = 1
if a∗ = arg maxa Qπ(s, a).

• If Qπ(s, a) > Vπ(s), then a is better than average. So we take increase its probability, π′(a |
s) > π(a | s).

Types of RL algorithms

• Policy gradients: directly differentiate the objective π∗ = arg maxθ Eτ∼pθ
[∑t r(st, at)]

– Green: evaluate returns Rτ = ∑t r(st, at)

– Blue: θ ← θ + α∇θEτ∼πθ
[Rτ]

– Examples: Q-learning Watkins [39], DQN Mnih et al. [25], temporal difference learning Sutton
[34], fitted value iteration

• Value-based: estimate value- or Q-function of the optimal policy

– Green: fit V(s) or Q(s, a)

– Blue: set π(s) based on a method outlined in the previous section

– Examples: REINFORCE Sutton et al. [36], natural policy gradient, TRPO Schulman et al. [31]

• Actor-critic: estimate value- or Q-function of the current policy, use it to improve policy

– Green: fit V(s) or Q(s, a)

– Blue: θ ← θ + α∇θE[Q(st, at)]

– Examples: A3C Mnih et al. [26], SAC Haarnoja et al. [12]

• Model-based: estimate the transition model, then:

– Use it for planning: use backpropagation to optimize over actions, or discrete planning
in discrete action spaces

– Backpropagate gradients into the policy

– Use the model to learn a value function (dynamic programming!)

– Something else

– Examples: Dyna Sutton [35], guided policy search Levine and Koltun [21]

Tradeoffs between RL algorithms

• Tradeoffs

– Sample efficiency is the number of samples we need to get a good policy. The most
important question is whether the algorithm is off-policy (can improve policy without
generating new samples from that policy) or on-policy (need to generate new samples
each time).

11
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– Stability and ease of use: stuff isn’t guaranteed to converge, especially since much of
RL doesn’t rely on gradient descent.

• Assumptions: full observability, stochastic vs. deterministic, continuous vs. discrete, episodic
vs. infinite horizon

• Easier to represent the policy or the model?

5 Policy Gradients (09/06)

The videos begin here.

REINFORCE

This section is based on Sutton et al. [36].

Recall from last time that the RL objective is as follows: for trajectory τ = (s1, a1, . . . , sT, aT), we
have

pθ(τ) = p(s1)
T

∏
t=1

πθ(at | st)p(st+1 | st, at).

Our objective is to compute

θ∗ = arg max
θ

Eτ∼pθ


T

∑
t=1

r(st, at)︸ ︷︷ ︸
r(τ)


︸ ︷︷ ︸

J(θ)

finite horizon
= arg max

θ

T

∑
t=1

Est,at∼pθ
[r(st, at)]

To evaluate the objective, we just rollout N times:

J(θ) ≈ 1
N ∑

i
∑

t
r(si,t, ai,t).

To improve the objective, we want to differentiate it. However, we don’t know the true values of
p (initial state distribution and transitions in the real world), so we do some algebra:

∇θ J(θ) = Eτ∼pθ
[r(τ)]

=
∫

r(τ)∇θ pθ(τ)dτ

=
∫

r(τ)pθ(τ)∇θ log pθ(τ)dτ

= Eτ∼pθ
[r(τ)∇θ log pθ(τ)].

Observe that

∇θ log pθ(τ) = ∇θ

[
log p(s1) +

T

∑
t=1

(
log πθ(at | st) + log p(st+1 | st, at)

)]

=
T

∑
t=1
∇θ log πθ(at | st),

12
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so continuing the original chain,

∇θ J(θ) = Eτ∼pθ

[(
T

∑
t=1
∇θ log πθ(at | st)

)(
T

∑
t=1

r(st, at)

)]
.

To evaluate the policy gradient, we just need to run N of them and take the average, then apply
gradient descent.

Intuitively, observe that actions associated with high rewards get their log probabilities increased,
and vice-versa. So you can think of it as a weighted maximum likelihood, or trial-and-error.

Remark. We didn’t use the Markov property in our derivation, so you can use policy gradient in
partially observed MDPs without modification; simply replace s with o.

Unfortunately, vanilla policy gradient doesn’t work too well in practice: if you take small N,
then your rewards will have high variance, and changes to the policy can be unpredictable or
undesirable.

Reducing variance

Causality

Above, we found

∇θ J(θ) ≈ 1
N

N

∑
i=1

(
T

∑
t=1
∇θ log πθ(ai,t | si,t)

)(
T

∑
t=1

r(si,t, ai,t)

)

=
1
N

N

∑
i=1

T

∑
t=1
∇θ log πθ(ai,t | si,t)

(
T

∑
t′=1

r(si,t′ , ai,t′)

)
.

Since the policy at time t′ cannot affect rewards at times t < t′, in expectation, we find

∇θ J(θ) ≈ 1
N

N

∑
i=1

T

∑
t=1
∇θ log πθ(ai,t | si,t)

(
T

∑
t′=t

r(si,t′ , ai,t′)

)
︸ ︷︷ ︸

Q̂i,t=“reward to go”

.

I don’t really
get this

Normalization

If our rewards are always positive, the more positive ones will just be increased more than the less
positive ones. Let’s say we want to make them zero-mean by subtracting b = 1

N ∑N
i=1 r(τ) from

r(τ) in the objective. We claim that in fact this is the same objective:

E[∇θ log pθ(τ)b] =
∫

pθ(τ)∇θ log pθ(τ)bdτ =
∫
∇θ pθ(τ)bdτ = b∇θ

∫
pθ(τ)dτ = b∇θ1 = 0.

Note that any value of b works; is our selected value of b actually good? Let’s write out the
variance explicitly.

Var∇θ J(θ) = Eτ∼pθ
[(∇θ log pθ(τ)(r(τ)− b))2]−Eτ∼pθ

[(∇θ log pθ(τ)(r(τ)− b))]2

13
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Figure 4: Off-policy Policy Gradient

We showed just now that the second term does not depend on b. So we only care about optimizing
the first one.

0 =
d Var∇θ J(θ)

db
= −2E[(∇θ log pθ(τ))

2r(τ)] + 2bE[(∇θ log pθ(τ))
2]

=⇒ b∗ =
E[(∇θ log pθ(τ))

2r(τ)]
E[(∇θ log pθ(τ))2]

.

Off-policy policy gradients

Policy gradient is an on-policy algorithm: recall that we approximate Eτ∼pθ
by sampling trajecto-

ries, and this changes each time we update our θ.

It is, however, possible to alter this toward an off-policy setting. Suppose we don’t have samples
from pθ(τ), but rather p(τ). We proceed by importance sampling:

J(θ) = Eτ∼pθ
[r(τ)] =

∫
pθ(τ)r(τ)dτ =

∫
p(τ)

pθ(τ)

p(τ)
r(τ)dτ = Eτ∼p

[
pθ(τ)

p(τ)
r(τ)

]
.

In fact, we can express the ratio in a convenient way:

pθ(τ)

p(τ)
=

p(s1)∏T
t=1 πθ(at | st)p(st+1 | st, at)

p(s1)∏T
t=1 π(at | st)p(st+1 | st, at)

=
∏T

t=1 πθ(at | st)

∏T
t=1 π(at | st)

.

Of course, this works well because we have access to π’s.

The gradient calculation is similar; one can follow this computation. See Figure 4.

14



CS 285 Fall 2023 Preston Fu

Implementing policy gradient

In practice, neural nets have many parameters, so we want to set up a graph to run automatic
differentiation. We do so with

J̃(θ) ≈ 1
N

N

∑
i=1

T

∑
t=1

log πθ(ai,t | si,t)Q̂i,t.

Warning 5.1.

• Variance is high, so gradients are noisy.

• Use large batches (on the scale of 103 or 104).

• There are policy gradient–specific learning rates. Adam is only ok.

Advanced policy gradients

Some parameters impact the probabilities much more than others in the gradient descent step, so
we want them to be weighed accordingly. It’s hard to choose a learning rate that is compatible
with every parameter.

We can frame gradient descent as the following optimization problem:

θ ← arg maxθ′(θ
′ − θ)⊤∇θ J(θ) subject to ∥θ′ − θ∥2 ≤ ε,

where ε is a proxy for the learning rate. But we don’t really care about parameter space; rather, we
want to limit “step size of the policy.” Thus, we instead condition

θ ← arg maxθ′(θ
′ − θ)⊤∇θ J(θ) subject to D(πθ′ , πθ) ≤ ε,

where D is a parameterization-independent measure of “divergence” between distributions. The
usual choice is Kullback–Leibler divergence

DKL(πθ′ ∥ πθ) = Eπθ′ [log πθ − log πθ′ ].

Through Taylor expansion, one can show that

DKL(πθ′ ∥ πθ) ≈ (θ′ − θ)⊤Eπθ
[∇θ log πθ(a | s)∇θ log πθ(a | s)⊤]︸ ︷︷ ︸

F=Fisher information matrix

(θ′ − θ).

This has a nice interpretation: now we can treat norms wrt F Schulman et al. [31], or our update
looks like θ ← θ + αF−1∇θ J(θ) Kakade [16].

6 Actor-Critic Algorithms (09/11)

Recall that for policy gradient, we found

∇θ J(θ) ≈ 1
N

N

∑
i=1

T

∑
t=1
∇θ log πθ(ai,t | si,t)

T

∑
t′=t

r(si,t′ , ai,t′)︸ ︷︷ ︸
Q̂i,t=“reward to go”

.

15
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However, Q̂i,t can be quite a bad estimate, since we only get one trajectory: really we want to
approximate the true expected reward to go, Q(st, at) = ∑T

t′=t Eπθ
[r(st′ , at′ | st, at)].

Recall that we want to subtract a baseline to our Q-values to reduce variance. This baseline is
V(st) = Eat∼πθ(·|st)Q(st, at). So our update looks like

∇θ J(θ) ≈ 1
N

N

∑
i=1

T

∑
t=1
∇θ log πθ(ai,t | si,t)A(si,t, ai,t),

where A denotes the advantage of taking a given action over the average.

Now, we think back to Figure 3. The green box fits to either Qπ, Vπ, or Aπ. Which one should we
use? Let’s do some math:

Qπ(st, at) = r(st, at) +
T

∑
t′=t+1

Eπθ
[r(st′ , at′) | st, at]

= r(st, at) + Est+1∼πθ(·|st,at)V
π(st+1)

≈ r(st, at) + Vπ(st+1),

Aπ(st, at) = Qπ(st, at)−Vπ(st)

≈ r(st, at) + Vπ(st+1)−Vπ(st).

So it’s probably good to learn Vπ, since it allows us to estimate the other two and is only dependent
on the state.

We can use Monte Carlo evaluation with function approximation, idea being that states and be

treated continuously. We are given some training data
{(

si,t,
T

∑
t′=t

r(si,t′ , ai,t′︸ ︷︷ ︸
yi,t

)}
. Our goal is to

solve the supervised regression problem with loss L(φ) = 1
2 ∑i

∥∥∥V̂π
φ (si)− yi

∥∥∥2
. Observe that

yi,t ≈ r(si,t, ai,t) + Vπ(si,t+1) ≈ r(si,t, ai,t) + V̂π
φ (si,t+1), a bootstrapped estimate. It increases bias

but reduces variance.

Remark. If T = ∞, then V̂π
φ can grow infinitely large. A simple trick is to use a discount factor

γ ∈ [0, 1] (usually in [0.9, 0.999]), so that yi,t = r(si,t, ai,t) + γV̂π
φ (si,t+1). One can think of this as the

addition of a “death state” to the MDP, to which every state has probability 1− γ of transitioning.
In this case, our update is

∇θ J(θ) ≈ 1
N

N

∑
i=1

T

∑
t=1
∇θ log πθ(ai,t | si,t)

T

∑
t′=t

γt′−tr(si,t′ , ai,t′).

From evaluation to actor-critic

The textbook algorithm is as follows. In practice, we need to make some changes because they
don’t work well for deep RL.

Design decisions

• Architecture: How should we learn V̂π
φ (s) and πθ(a | s)? We can either use a two network

or shared network design.

16
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Algorithm 2 Batch Actor-Critic

1: for t← 1 to T do
2: sample trajectory τ ∼ πθ

3: fit V̂π
φ (s) to sampled reward sums

4: evaluate Âπ(si, ai) = r(si, ai) + γV̂π
φ (s′i)− V̂π

φ (si)

5: ∇θ J(θ) ≈ 1
N ∑i∇θ log πθ(ai | si)Âπ(si, ai)

6: θ ← θ + α∇θ J(θ)
7: end for

• Implementation: Typically, line 3 in online actor-critic works best with a batch, i.e. parallel
workers. So we must ask whether it is best to use synchronous or asynchronous paralleliza-
tion (do we update θ after all threads are done, or is it fine to trust that updates to θ are small
enough that it doesn’t make a difference to other threads?). In practice, we usually use the
latter approach because performance gains outweigh slight biases.

• Removing the on-policy assumption: Add a replay buffer that stores transitions that we
saw in previous time steps.

Algorithm 3 Online Actor-Critic

1: while loop as long as you want do
2: take action a ∼ πθ(· | s), get (s, a, s′, r), and store inR
3: sample a batch {si, ai, ri, s′i} fromR
4: update Q̂π

φ using targets yi = ri + γQ̂π
φ(s′i, a′i)

5: ∇θ J(θ) ≈ 1
N ∑i∇θ log πθ(aπ

i | si)Âπ(si, aπ
i ) where aπ

i ∼ πθ(· | si)

6: θ ← θ + α∇θ J(θ)
7: end while

In particular, there are several key differences between Algorithms 2 and 3. In line 4, we are
learning Q instead of V. The issue is that the value function would take the expectation over
actions distributed according to our old policy, not πθ . So we remedy this by using Q, which
works fine for any state-action pair, and sampling a′i ∼ πθ(· | s′i). The same principle holds
for line 5.

Remark. In line 5, it’s fine to use Q̂π instead of Âπ, despite this having higher variance.
Since we don’t need to interact with a simulator, we can just sample more actions without
generating more states.

Critics as baselines

Actor-critic works well because it has lower variance but can be biased (who knows if Q̂ is any
good?). Policy gradient is unbiased in expectation but has higher variance (you only collect one
sample). So the idea is to use V̂π

φ as the baseline, with the intention that the estimator remains
unbiased and has only slightly higher variance than actor-critic.

If our critic is good, then we can use the following unbiased estimator, provided that the second

17
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term is computable:

∇θ J(θ) ≈ 1
N

N

∑
i=1

T

∑
t=1
∇θ log πθ(ai,t | si,t)(Q̂i,t −Qπ

φ(si,t, ai,t)) +
1
N

N

∑
i=1

T

∑
t=1
∇θEat∼πθ(·|si,t)Q

π
φ(si,t, at)

In practice, we usually want to trade off bias and variance. In fact, there is a controlled way to do
so with n-step returns. The idea is that the critic

Âπ
C(st, at) = r(st, at) + γV̂π

φ (st+1)− V̂π
φ (st)

can have high bias but low variance, while the Monte Carlo estimate

Âπ
MC(st, at) =

∞

∑
t′=t

γt′−tr(st′ , at′)− V̂π
φ (st)

has no bias and high variance. So we can use Monte Carlo for n steps, cut it off, then use the critic:

Âπ
n (st, at) =

t+n

∑
t′=t

γt′−tr(st′ , at′)− V̂π
φ (st) + γnV̂π

φ (st+n).

We can recognize this as a generalization of our previous approach with n = 1; in practice, n > 1
often works better.

This approach can be generalized further (called generalized advantage estimation (GAE)) Schul-
man et al. [32]. The idea is that we don’t have to just choose one n; rather, we can cut everywhere
at once. Now we choose weights and take

Âπ
GAE(st, at) :=

∞

∑
n=1

wn Âπ
n (st, at).

We still prefer cutting earlier, so we want the weights to decrease. In practice, wi ∝ λi−1 is a pretty
good choice. This essentially contributes to our discount factor; one can show that

Âπ
GAE(st, at) =

∞

∑
t′=t

(γλ)t′−t
(

r(st, at) + γV̂π
φ (st′+1)− V̂π

φ (st′)
)

.

As such, we can view discounts as variance reduction.

7 Value Function Methods (09/13)

The videos begin here.

Q-iteration

Question 7.1. Can we omit policy gradient? We learn a value function, so maybe we can just use
it directly.
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Answer. Yes: just take the best action arg maxat
Aπ(st, at), then follow π. Implicitly, we define a

policy

π′(at | st) = 1

{
at = arg max

at

Aπ(st, at)

}
It is at least as good as π, and probably better.

So it remains to evaluate Aπ(st, at), which we can do by learning the value function. We use the
bootstrapped estimate

Vπ(s)← Ea∼π(·|s)[r(s, a) + γEs′∼p(·|s,a)[V
π(s′)]]

= r(s, π(s)) + γEs′∼p(·|s,π(s))[V
π(s′)],

where the second line follows from π being deterministic.

Alternatively, we can simplify this by avoiding representing the policy altogether: it is equivalent
to iterate as

Algorithm 4 Value Iteration (Small Discrete Case)

1: for run K times do
2: Qπ(s, a)← r(s, a) + γEs′∼p(·|s,a)Vπ(s′)
3: Vπ(s) = maxa Qπ(s, a)
4: end for

This works great for small examples, say if you’re on a 4× 4 grid and can only move one of 4 ways,
since we’re just storing our value function as a table and updating it with a loop. But in practice,
this doesn’t work; even if you have 200 × 200 images as states, you’ll have |S| = 256200×200×3

(more than the number of atoms in the universe). So we’ll use a neural net function approximator
V : S → R. Our goal is to minimize L(φ) = 1

2

∥∥Vφ(s)−maxa Qπ(s, a)
∥∥2.

Algorithm 5 Fitted Value Iteration

1: for run K times do
2: yi ← maxai

(
r(si, ai) + γEs′i∼p(·|si ,ai)Vφ(s′i)

)
3: φ← arg minφ

1
2 ∑i

∥∥Vφ(si)− yi
∥∥2

▷ gradient descent
4: end for

However, this doesn’t work in practice: in line 2, we must test multiple actions for each state
(which isn’t allowed if we can only roll out policies), and we also don’t know transition dynamics
p. But there is a fairly simple fix, replacing our V function with Q again:

Qπ(s, a)← r(s, a) + γEs′∼p(·|s,a)[Q
π(s′, π(s′))].

Observe that a doesn’t appear in the expectation; it is merely conditioned on. As such, we can
approximate this by generating {(s, a, s′)} from the samples we’ve already collected. (We don’t
need to simulate new ones! In fact, since we made no assumptions about our sample, this works
for off-policy sampling.)

Remark. This isn’t just gradient descent, since we can’t differentiate through the max.
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Algorithm 6 Fitted Q Iteration

1: Collect D = {(si, ai, s′i, ri)}
2: for run K times do
3: yi ← r(si, ai) + γE[Vφ(s′i)] ≈ r(si, ai) + γ maxa′ Qφ(s′i, a′i) ▷ improve the policy
4: φ← arg minφ

1
2 ∑i

∥∥Qφ(si, ai)− yi
∥∥2

▷ minimize the error of fit; gradient descent
5: end for

Q-learning

In Algorithm 6, we can convert this process to an online process, where instead of sampling from
a predetermined dataset, we take some action ai and observe (si, ai, s′i, ri), then proceed as before.
This is called online Q-learning.

Our final policy (ideally) should be π(at | st) = 1

{
at = arg maxat

Qφ(st, at)
}

. However, we don’t
want our initial policy to be deterministic, because it won’t explore. A common approach is called
ε-greedy, i.e.

π(at | st) =

{
1− ε if at = arg maxat

Qφ(st, at)

ε/(|A| − 1) else.

It is also common to decrease ε over time: in the beginning, you might want to encourage more
exploration, and later on, as the policy converges, you might want behavior to be more stable.

Another approach is Boltzmann exploration (softmax), π(at | st) ∝ exp Qφ(st, at). The idea is that
two almost equally good actions will be taken almost equally as frequently, while actions you’ve
already discovered as terrible shouldn’t be re-explored.

Value function learning theory

We can summarize Algorithm 4 using the Bellman operator BV := maxa(ra +γTaV), where ra is a
stacked vector of rewards at all states for action a and Ta ∈ R|S|×|S| stores the values of p(s′ | s, a).
The idea is that V∗ = BV∗, and moreover:

Claim 7.2. V∗ always exists, is unique, and corresponds to the optimal policy.

Proof. First, we claim that B is a contraction with respect to ℓ∞:

∥BπV1 −BπV2∥∞ = ∥R + γPπV1 − R− γPπV2∥∞

= γ ∥Pπ(V1 −V2)∥∞

≤ γ ∥V1 −V2∥∞ .

In line 3, since Pπ represents a transition matrix, its rows are nonnegative reals summing to 1, and
as such its product with any vector must be at most the largest entry in the vector.

Taking V̄ := V∗ yields the desired result. ■

Remark. An observation that is useless for now but potentially useful for analysis in the future: if
for some reason you have small S and known transition probabilities, it turns out for γ < 1 that
I − γPπ is full-rank, and thus Vπ = (I − γPπ)−1R.
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Now, let us consider the more general case of Algorithm 5. Recall that we update V ′ ← arg minV′∈Ω
1
2 ∑ ∥V ′(s)− (BV)(s)∥2,

where Ω denotes the space of all value functions represented by our neural net. If we define the
orthogonal projection ΠV := arg minV′∈Ω

1
2 ∑ ∥V ′(s)−V(s)∥2, then the algorithm is equivalent

to looping V ← ΠBV. Unfortunately, although Π is a contraction with respect to the ℓ2 norm,
it is not the case that ΠB is a contraction with respect to any norm. As a result, our V ′ need not
converge, and often this happens in practice.

In the case of Algorithm 6, we define B much in the same way, and following the same steps, find
that V does not necessarily converge. The same logic applies to online Q-learning.

8 Deep RL with Q-functions (09/18)

The videos begin here.

Recall that there are some major problems with trying to apply Q-learning directly in deep RL:

• We can’t run gradient descent through a max.

Solution: Only update φ every N steps, so that your target isn’t moving most of the time.
Each loop can then be regarded as a supervised learning problem.

• s′i and si are correlated, which violates a basic assumption for stochastic gradient methods.
Conceptually, the result is that since the target value is always changing, φ will overfit to the
most recent states.

Solution: Instead of online Q iteration, it’s fine to use any policy with broad support and to
load data (si, ai, s′i, ri) from a dataset.

A solution to the latter problem is to use a replay buffer: Putting it together, our full pipeline will
look like:

Algorithm 7 Q-learning with replay buffer and target network

1: for run M times do
2: save target network parameters φ′ ← φ

3: for run N times do
4: collect dataset {(si, ai, s′i, ri)} from some policy, add it to B
5: for run K times do
6: sample a batch (si, ai, s′i, ri) from B
7: φ← φ− α ∑i

dQφ(si ,ai)
dφ (Qφ(si, ai)− (r(si, ai) + γ maxa′ Qφ′(s′i, a′i)))

8: end for
9: end for

10: end for

Note that in line 7, we are computing our target using φ′. The classic deep Q-learning (DQN)
algorithm uses K = 1. Usually, N is pretty big, maybe 104. It does, however, seem a bit strange
that we only update φ′ on such long intervals: there is a considerable jump between the maximum
“lag” on the Nth step and none on the (N + 1)th step. A popular alternative, similar to Polyak
averaging in convex optimization, is updating φ′ ← τφ′ + (1− τ)φ, where τ = 0.999 works well.

Remark. All Q-learning methods appear somewhere in Figure 5, with different frequencies for the
three processes. For instance, online Q-learning has frequencies 1 = 2 = 3, DQN 1 = 3 > 2, and
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Figure 5: High-level overview of Q-learning methods

fitted Q-iteration 3 > 2 > 1.

Q-learning in practice

Question 8.1. How accurate are Q-values?

Answer. Not very. Generally they follow the same trend as the true values, but are systematically
much higher.

Recall that for random variables X and Y, E[max(X, Y)] ≥ max(EX, EY). With this in mind,
consider our target value update yj = rj + maxa′j

Qφ′(s′j, a′j). Our Qφ′ learns some noise, so it’ll
overestimate the true value even if Qφ′ is unbiased.

A solution is double Q-learning. Recall that our update worked because of the “argmax trick”

max
a′

Qφ′(s′, a′) = Qφ′(s′, arg max
a′

Qφ′(s′, a′)).

The issue is that both the action and the value come from Qφ′ . If that noise is decorrelated, then
the issue should go away (we assume that φ and φ′ have sufficiently uncorrelated noise):

y← r + γQφ′

(
s′, arg max

a′
Qφ(s′, a′)

)
.

Question 8.2. When Q-values are bad, they are primarily guided by rewards. Can we construct
multi-step targets to mitigate this?

Answer. Yes:

yj,t =
t+N−1

∑
t′=t

γt′−1rj,t′ + γN max
aj,t+N

Qφ′(sj,t+N , aj,t+N).

This is good because target values are less biased, and training usually happens more quickly early
on. However, it is only correct when learning on-policy (you sample from your buffer instead of
the actions your policy would’ve actually taken).

Below we describe some implementation notes:

• Q-learning takes care to stabilize; its performance on different tasks will vary wildly
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• Large replay buffers improve stability

• Gradients can be massive, so you should use clipped gradients or Huber loss

L(x) =

{
x2/2 if |x| ≤ δ

δ|x| − δ2/2 else

• Double Q-learning performs way better, with virtually no downsides

Continuous actions

For discrete actions, we evaluated the max or arg max for our update rules. What is the analog?

1. Optimization

• SGD is pretty slow in the inner loop

• Pretend it’s discrete: sample a1, . . . , aN , and approximate maxa Q(s, a) ≈ max {Q(s, ai)}
• Cross-entropy method (CEM): simple iterative stochastic optimization

• CMA-ES: a less simple iterative stochastic optimization method

2. Use function class that is easy to optimize:

Qφ(s, a) = −1
2
(a− µφ(s))⊤Pφ(s)(a− µφ(s)) + Vφ(s).

Then the max is Vφ(s), achieved at a = µφ(s).

3. Use an approximate maximizer µθ(s) such that µθ(s) ≈ arg maxa Qφ(s, a). You can just use

this by pushing gradients, dQφ

dθ =
dQφ

da
da
dθ . In fact, this method exists and is called DDPG

Lillicrap et al. [22].

Algorithm 8 DDPG

1: for run K times do
2: take an action ai, observe (si, ai, s′i, ri), and add it to B
3: sample a minibatch
4: compute target yj = rj + γQφ′(s′j, µθ(s′j)) using target nets Qφ′ and µθ

5: φ← φ− α ∑j
dQφ(sj,aj)

dφ (Qφ(sj, aj)− yj)

6: θ ← θ + β ∑j
dQφ(sj,µ(sj))

dµ(sj)

dµ(sj)
dθ

7: update φ′ and θ′ via Polyak averaging
8: end for

9 Advanced Policy Gradients (09/20)

The videos begin here.

Why does policy gradient work?

Generally, you can think of policy gradient as two steps alternating: (10 estimating Âπ(st, at) for
the current policy π, then (2) using Âπ(st, at) to improve your policy π′. Structurally, this looks
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similar to policy iteration, which alternates (1) evaluate Aπ(s, a) and (2) set π ← π′. Analogously,
we want to optimize our new policy over the old policy relative to the new policy. Why do we

care about the
expectation
relative to θ′

rather than
θ? (Doesn’t
it solve our
problems with
distributional
shift?)

Proposition 9.1.

J(θ′)− J(θ) = Eτ∼πθ′

[
∑

t
γt Aπθ (st, at)

]

Proof.

J(θ′)− J(θ) = J(θ′)−Es0∼p[Vπθ (s0)]

= J(θ′)−Eτ∼πθ′ [V
πθ (s0)]

= Eτ∼πθ′

[
∞

∑
t=0

γtr(st, at)

]
−Eτ∼πθ′

[
∞

∑
t=0

γtVπθ (st)−
∞

∑
t=1

γtVπθ (st)

]

= Eτ∼πθ′

[
∞

∑
t=0

γt (r(st, at) + γVπθ (st+1)−Vπθ (st))

]

= Eτ∼πθ′

[
∑

t
γt Aπθ (st, at)

]
,

as claimed. Note that the second equality holds for any policy with initial state distribution p. ■

We want to convert this such that the expectation is under πθ :

Eτ∼πθ′

[
∑

t
γt Aπθ (st, at)

]
= ∑

t
Est∼pθ′

[
Eat∼πθ′ (·|st)

[
γt Aπθ (st, at)

]]
= ∑

t
Est∼pθ′

[
Eat∼πθ(·|st)

[
πθ′(at | st)

πθ(at | st)
γt Aπθ (st, at)

]]
=: Ā(θ).

To do so, we want pθ′ ≈ pθ . Specifically,

Claim 9.2. Suppose that for all st, |πθ′(at | st)− πθ(at | st)| ≤ ε. Then for small enough ε, the
update θ′ ← arg maxθ′ Ā(θ′) is guaranteed to improve J(θ′)− J(θ).

First, we state the following lemma without proof:

Lemma 9.3. If ∑x |pX(x)− pY(y)| = ε, there exists p(x, y) such that p(x, ·) = pX(x), p(·, y) =
pY(y), and p(x = y) = 1− ε.

Proof of Claim 9.2. By the lemma, how?

|pθ′(st)− pθ(st)| = (1− (1− ε)t)|pmistake(st)− pθ(st)| ≤ 2(1− (1− ε)t) ≤ 2εt.
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Then for any function f ,

Est∼pθ′ f (st) = ∑
st

pθ′(st) f (st)

≥∑
st

pθ(st) f (st)− |pθ(st)− pθ′(st)|max
st

f (st)

≥ Est∼pθ
f (st)− 2εt max

st
f (st).

Note that we can upper-bound the quantity inside the expectation over states in Ā(θ) by O(Trmax),
so converting the expectation over pθ′ to one over pθ is guaranteed to improve J(θ′) − J(θ) for
sufficiently small θ. ■

Remark. The proof still works if our assumption of “closeness” on the policies is true in expectation
over st.

This is pretty nice, but even in expectation, the bound on the absolute divergence between pθ and
pθ′ is pretty tight. Instead, we’ll impose a different constraint, which works much better because
the KL-divergence has some convenient properties that make it much easier to approximate:

Definition 9.4. The KL-divergence of distributions p1 and p2 is

DKL(p1(x) ∥ p2(x)) = Ex∼p1

[
log

p1(x)
p2(x)

]
.

Claim 9.5 (Almost the same as Claim 9.2). Suppose that DKL(πθ′(at | st) ∥ πθ(at | st)) ≤ ε.
Then for small enough ε, the update θ′ ← arg maxθ′ Ā(θ′) is guaranteed to improve J(θ′)−
J(θ).

Proof. “Recall” from convex optimization that to enforce the constraint on the KL-divergence, we
use the Lagrangian

L(θ′, λ) := A(θ′)− λ(DKL(πθ′(at | st) ∥ πθ(at | st))− ε)

(where λ is a Lagrange multiplier) and perform dual gradient descent:

1. maximize L(θ′, λ) with respect to θ′ [just run a few gradient steps]

2. λ← λ + α(DKL(πθ′(at | st) ∥ πθ(at | st))− ε).

■

Natural gradient

This is based on Peters and Schaal [28]. In practice, it can work much better than the standard
gradient.

We can approximately optimize an objective by using a Taylor approximation and optimizing over
a small neighborhood. In the case of linearization, optimization is trivial (you just need to take the
lower endpoint). In this case, we take

θ′ ← arg max
θ′

∇θ′ Ā(θ′)⊤(θ′ − θ) subject to DKL(πθ′(at | st) ∥ πθ(at | st)) ≤ ε.
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This is especially clean because

∇θ′ Ā(θ′) = ∑
t

Est∼pθ

[
Eat∼πθ(·|st)

[
πθ′(at | st)

πθ(at | st)
∇θ′ log πθ′(at | st)γ

t Aπθ (st, at)

]]
= ∑

t
Est∼pθ

[
Eat∼πθ(·|st)

[
∇θ log πθ(at | st)γ

t Aπθ (st, at)
]]

,

the standard policy gradient.

So the constrained optimization problem remains. One can observe that gradient ascent is equiv-
alent to arg maxθ′ ∇θ J(θ)⊤(θ′ − θ) subject to ∥θ′ − θ∥2

2 ≤ ε. We can approximate our problem (the
same thing, but with a different constraint) to apply gradient ascent: in another lecture, we saw
that DKL(πθ′ ∥ πθ) ≈ 1

2 (θ
′ − θ)⊤F(θ′ − θ), where

F = Eτ∼πθ
[(∇θ log πθ(a | s))(∇θ log πθ(a | s))⊤]

is the Fisher information matrix (we collect it via samples). Thus, our natural gradient update is

θ′ = θ + αF−1∇θ J(θ), α =

√
2ε

∇θ J(θ)⊤F∇θ J(θ)
.

In practice, computing these product efficiently is nontrivial; see Schulman et al. [31].

10 Optimal Control and Planning (09/25)

The videos begin here.

So far, we’ve only looked at model-free RL, i.e. we treat p(st+1 | st, at) as unknown and make
no attempt to learn it. But in games, easily modeled systems (e.g. navigating a car), simulated
environments, we know the dynamics completely. In some cases, we can learn dynamics, either
through system identification or learning (in this course, mostly the latter).

The deterministic case st+1 = f (st, at) is pretty simple:

a1, . . . , aT = arg max
at

T

∑
t=1

r(st, at).

The stochastic open-loop1 case is

a1, . . . , aT = arg max
at

E

[
∑

t
r(st, at)

∣∣∣∣∣ a1, . . . , aT

]
,

and the stochastic closed-loop case is

π = arg max
π

Eτ∼p

[
∑

t
r(st, at)

]
.

1Closed-loop means that the agent is allowed to run one action at a time, at ∼ π(· | st). Open-loop means that the
agent gets one state and must commit to a sequence of actions a1, . . . , aT .

26

https://www.youtube.com/watch?v=4SL0DnxC1GM&list=PL_iWQOsE6TfVYGEGiAOMaOzzv41Jfm_Ps&index=40&ab_channel=RAIL


CS 285 Fall 2023 Preston Fu

Open-loop planning

We abstract away optimal control and planning, regarding the sum of rewards as a function
J and a1, . . . , aT as a vector a (we don’t care about time dependency), leaving us to compute
arg maxa J(a). Here are some ideas:

• Random shooting: Pick a1, . . . , an uniformly at random. Then take a = arg maxi J(ai).

– Is super easy to code and can be implemented with some nice tricks on a GPU.

– Performance might not be good.

• Cross-entropy method: Loop the following: Pick a1, . . . , an from some distribution p (e.g.
Gaussian). Then refit p on the “elites” ai1 , . . . , aiM with the largest J(·).

– Easy to implement and fast when parallelized.

– Harsh dimensionality limit, and only works with open-loop planning.

Discrete case: Monte Carlo tree search

Consider a tree, where each node represents a unique sequence of actions; you want to approxi-
mate J without the full tree. So you’ll take a few actions, then run a baseline policy π at each node.
Intuitively, we want to choose nodes with the best rewards, but also prefer rarely visited nodes.

Algorithm 9 MCTS Sketch

1: procedure UCT TREEPOLICY(s1) ▷ not actually a policy
2: if st not fully expanded, choose next at

3: else choose child state with best Score(st+1) =
Q(st+1)
N(st+1)

+ 2C
√

2 ln N(st)
N(st)

▷ Q(·) is the reward
of a node, and N(·) is the number of times we’ve visited it

4: end procedure
5: for repeat K times do
6: find a leaf sℓ with TREEPOLICY(s1)

7: evaluate the leaf using DEFAULTPOLICY(sℓ)
8: update all values in tree between s1 and sℓ
9: end for

10: take best action from s1

Continuous case: trajectory optimization with derivatives

Control theory usually uses (xt, ut) as states and actions, and minimizes a cost c, so that the objec-
tive is

min
ut

T

∑
t=1

c(xt, ut) s.t. xt = f (xt−1, ut−1),

or equivalently

min
ut

c(x1, u1) + c( f (x1, u1), u2) + · · ·+ c( f ( f (· · · ) · · · ), uT).
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Figure 6: LQR

Unfortunately, your typical gradient methods won’t work well, since applying f many times
means multiplying many Jacobians together and requires singular values close to 1 (else explod-
ing/vanishing problem). In practice, it helps to use second-order methods (and there exist some
that don’t require computing massive Hessians!).

First, we’ll consider the “linear case”

f (xt, ut) = Ft

[
xt

ut

]
+ ft

c(xt, ut) =
1
2

[
xt

ut

]⊤
Ct

[
xt

ut

]
+

[
xt

ut

]⊤
ct

We can optimize this one entry at a time; in the objective, note that uT only appears once, in the
final term. The math is pretty annoying, but conceptually it’s very straightforward to differentiate
with respect to uT (giving a linear expression in xT) and substitute to optimize both variables.
Next, we optimize (xT−1, uT−1); we must be careful because they influence xT, but again we get a
quadratic, and it’s not so bad. See Figure 6 for the full algorithm.

Remark. It turns out that for stochastic dynamics given by xt+1 ∼ N
(

Ft

[
xt

ut

]
+ ft, Σt

)
, we choose

actions using exactly the same update we saw in the linear case. To prove this, you use the fact
that Gaussians are symmetric and that expectation of quadratics under Gaussians are analytic.

In the case of nonlinear systems, we can simply use a Taylor approximation; see Figure 7. One
may observe that it is almost the same as Newton’s method, excecpt that we still have f linear.
If we make our approximation to f quadratic, then the resulting algorithm, differential dynamic
programming (DDP), is really just Newton’s method.

11 Model-Based RL (09/27)

The videos begin here.
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Figure 7: Iterative LQR

Suppose (WLOG) that our world is deterministic, and we want to learn f (st, at) from data. The
basic strategy is as follows:

• run base policy π0(at | st) to collect D = {(s, a, s′)i}
• learn dynamics model f (s, a) to minimize ∑i ∥ f (si, ai)− s′i∥

2

• plan through f (s, a) to choose actions

This strategy works well in some cases, e.g. system identification in robotics. Typically, in this
case, we fit parameters to a specific model (e.g. physics), and there are not very many of them.
In deep neural nets, however, we experience the problem of distributional shift, since π0 won’t
collect as much data on states with low marginals. As we use more expressive model classes, the
fit will be tighter, and the problem becomes worse.

We apply two fixes:

• In DAgger, we found that this problem was pretty hard to resolve; we required a human
expert to tell us the best actions at each state. With model-based RL, this is easy: just execute
the actions and see what happens.

• We don’t need to relearn the dynamics model every time, and furthermore executing several
actions consecutively loses information. So instead, we’ll just execute one action at a time
and append to our dataset to adjust for errors as quickly as possible.

Algorithm 10 Model Predictive Control Mayne et al. [24]

1: run base policy π0(at | st) to collect D = {(s, a, s′)i}
2: for run K times do
3: learn dynamics model f (s, a) to minimize ∑i ∥ f (si, ai)− s′i∥

2

4: for run N times do
5: plan through f (s, a) to choose actions
6: execute the first action and append (s, a, s′) to D
7: end for
8: end for

The computational bottleneck is planning. In practice, since we are doing so much planning, each
individual plan can afford to be worse. Things like shortening horizons or even random shooting
can work well.
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Uncertainty

By default, model-based RL may have low performance because it overfits to its collected data.
If there are weird spikes in the learned reward function, it’s tempting for the planner to exploit
mistakes in the model, particularly in the early stages of training where uncertainty is high.

Given a particular state-action pair, instead of predicting a particular state s′, we predict a distri-
bution over states under your uncertainty about the model. Importantly, predicting the expected
reward is sufficient here, since the planner will naturally avoid large negative rewards.

As a clarification, there are two types of uncertainty:

• aleatoric or statistical uncertainty (the data is noisy),

• epistemic or model uncertainty (the true function isn’t noisy, but we don’t know what the
“right function” is).

Outputting the MLE or the distribution over the next state doesn’t resolve the latter problem, and
this is what we’re interested in solving.

In the case of neural nets, suppose that the model parameters θ yield a distribution pθ(st+1 | st, at).
We are uncertain about θ; the entropy of p(θ | D) represents our model uncertainty, and we’ll
predict according to Eθ∼p(·|D)[pθ(st+1 | st, at)]. Computing this expectation is intractable, so we
want a good way to estimate p(θ | D).

Note. A brief aside: traditionally, neural nets have weights assigned to each edge. In Bayesian
neural nets, we assign distributions, i.e. p(θi | D) = N (µi, σ2

i ). (There are two weights per θi.)

We’ll use bootstrap ensembles: we generate “independent” datasets to train “independent” mod-
els. If we have N models (usually < 10 due to computational requirements), then we will write

p(θ | D) ≈ 1
N ∑

i
δ(θi) =⇒

∫
p(st+1 | st, at)p(θ | D)dθ ≈ 1

N ∑
i

p(st+1 | st, at).

In theory, the idea of bootstrapping is to train θi on Di, which is sampled with replacement from
D. In practice, it’s usually unnecessary to do this, since SGD and random initialization are enough
to make them roughly independent.

Finally, suppose we’ve trained our N uncertainty models and want to plan using them. If we have
some candidate action sequence a1, . . . , aT, we will:

1. sample θ ∼ pi(· | D)
2. sample st+1,i ∼ pθ(· | st,i, at,i)

3. compute Ri = ∑T
t=1 r(st,i, at,i)

4. compute 1
N ∑N

i=1 Ri

In practice, this works quite well; in Chua et al. [3], model-based methods exceed model-free
performance in around 10 minutes of training.

Images

Complex observations, e.g. images, are hard to deal with using f (st, at) = st+1, since they have
high dimensionality, lots of redundancy, and are working with a POMDP (we don’t know states!).
Instead, we can separately learn the observation, dynamics, and reward models, as in Figure 8.
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Figure 8: State space models

With this in mind, the objective is as follows:

Thus, we want to learn an approximate posterior qψ(st | o1:t, a1:t), which we call the “encoder.” In
the very simple case where q(st | ot) is deterministic, i.e. st = gψ(ot) (the stochastic case requires
variational inference), the problem is equivalent to

(The previous objective omitted reward, but we’ve added it back here.) This is good, because we
can optimize ϕ and ψ jointly with backprop.

The final algorithm looks very similar to Algorithm 10. In line 3, we instead learn pϕ(st+1 | st, at),
pϕ(rt | st), p(ot | st), and gψ(ot). In line 6, we instead append (o, a, o′).

12 Model-based RL with policies (10/02)

The videos begin here.

Review of last week:

• Open-loop control is suboptimal.

Example 12.1. Consider a math test where you add two one-digit numbers. There are two
timesteps. On the first, you can either accept the test or go home. On the second, you get to
look at the test and produce an answer. If you get the answer right, you get $2; wrong, -$1;
stay home, $0.

In open-loop planning, you have to commit to both actions, which is necessarily suboptimal.

MPC doesn’t solve this, because even though it plans at every timestep, each plan is open-
loop.

The closed-loop case solves this problem.
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Figure 9: Backprop into policy computation graph

• We have to decide the form of π. Common choices are a neural net or a time-varying linear
map Ktst + kt.

Question 12.2. What’s the problem with backprop directly into the policy? See Figure 9, where
we optimize the negative sum of rewards.

Answer.

• With shooting methods, we had LQR. There is no analog here, because policy parameters
couple all the timesteps and we cannot use dynamic programming (we no longer benefit
from the temporal structure). Moreover, second-order methods are usually pretty flaky for
neural nets.

• This is similar to training long RNNs with vanilla backprop, and without fancy architec-
tures will produce vanishing or exploding gradients. Also, we cannot just choose dynamics;
LSTMs will produce Jacobians close to the identity matrix, but we can’t just choose the dy-
namics (the real thing might have large or small eigenvalues, which our patch won’t fix).

Model-free learning with a model

The idea is that you don’t need to actually run the policy all that often; you can run your model
very quickly and use it as a proxy for the real world.

However, as-is, this would result in distributional shift, and is exacerbated by the fact that the
policy is updated periodically (we aren’t sampling from the same policy from which our data was
collected), and as in imitation learning, it’s possible to prove that error accumulates in O(εT2).

The issue with just taking T small is that you’ll never see later timesteps. One workaround is that
you can run some long trajectories to produce D, and generate short trajectories (on the order of
≤ 10 steps) starting at different states in D. However, this means that:

• You’re using a different policy to roll into the state than to roll out of it.

• As a result, your state distribution is complicated: it’s a combination of the two policies.

In practice, people use a method based on Dyna Sutton [35]. See Algorithm 12.

For example, see Algorithm 13, which, along with MBA Gu et al. [10] and MVE Feinberg et al. [5]
apply some specific design decisions to the preceding general structure.

• These methods tend to be sample-efficient. We add data from running the policy to our
buffer, which is fed back in as input.

• If our model p̂ is bad, then our model-based rollout won’t provide good data we add to B.
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Figure 10: Black represents true rollouts from the data, and red represents running the policy from
different points along the true trajectories.

Algorithm 11 Model-based RL with short rollouts

1: run base policy π0(at | st) to collect D = {(s, a, s′)i}
2: learn dynamics model f (s, a) to minimize ∑i ∥ f (si, ai)− s′i∥

2

3: for loop N times do
4: for loop K times do
5: pick states si from D, use f (s, a) to generate short rollouts
6: use both real and model data to improve πθ(a | s) with off-policy RL
7: end for
8: run πθ(at | st), appending visited tuples (s, a, s′) to D
9: end for

Algorithm 12 Generalization of Dyna

collect some data B {s, a, s′, r)}
learn model p̂(s′ | s, a) and r̂(s′ | s, a)
for loop K times do

sample s ∈ B, choose action a (from B, π, or random)
simulate s′ ∼ p̂(s′ | s, a) and r = r̂(s, a)
train on (s, a, s′, r) with model-free RL
take N more model-based steps

end for
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Algorithm 13 Model-Based Policy Optimization

1: take some action ai and observe (si, ai, s′i, ri), add it to B
2: for loop K times do
3: sample mini-batch

{
sj, aj, s′j, rj

}
from B uniformly

4: use
{

sj, aj, s′j
}

to update model p̂(s′ | s, a)

5: sample
{

sj
}

from B
6: for each sj, perform model-based rollout with a = π(s)
7: use all transitions (s, a, s′, r) along rollout to update Q-function
8: end for

Multi-step models and successor representations

Recall that our objective in evaluation is

J(π) = Es∼p(s1)[V
π(s1)]

Vπ(st) =
∞

∑
t=t′

γt′−tEst′∼p(·|st)Eat′∼π(·|st′ )
[r(st′ , at′)] =

∞

∑
t=t′

γt′−tEst′∼p(·|st)[r(st′)]

For simplicity of notation, we’ll condition on just states, and add actions back in at the end (they
were just sampled from π).

=
∞

∑
t=t′

γt′−tEst′∼p(·|st)[r(st′)]

= ∑
s

r(s)
∞

∑
t=t′

γt′−t p(st′ = s | st).

Define pπ(sfuture = s | st) := (1− γ)∑∞
t=t′ γ

t′−t p(st′ = s | st), where the 1− γ is to ensure that
summing over st yields 1, so that

=
1

1− γ ∑
s

pπ(sfuture = s | st)r(s).

Equivalently, one can take µπ
i (st) := pπ(sfuture = i | st) (the successor representation), so that

=
1

1− γ
µπ(st)

⊤r.

Like a model, the successor representation predicts future states, but like a value function, it is a
discounted average.

One can observe by definition that the successor representation satisfies a Bellman equation

µπ
i (st) = (1− γ)1{st = i}+ γEat∼π(·|st),st+1∼p(·|st,at)[µ

π
i (st+1)].

Let φj(s) represent some features, and define

ψπ
j (st) = ∑

s
µπ

s (st)φj(s).
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If we can express r(s) as a linear combination w⊤φ(s), then it is easy to check that Vπ(st) =

w⊤ψπ(st). The benefit is that we can make the number of features much smaller than the number
of states, which makes this computationally tractable.

A result of this is that we can use successor features to recover Q-functions very quickly. Suppose
we manually define our features ahead of time. Then This is equivalent to one step of policy

Algorithm 14 Recovering Q-function

1: train ψπ(st, at) via Bellman updates
2: get some sample rewards {(s, r)i}
3: w← arg minw ∑i

∥∥φ(si)
⊤w− ri

∥∥2

4: recover Qπ(st, at) ≈ ψπ(st, at)⊤w
5: π′(s) = arg maxa ψπ(s, a)⊤w

iteration, i.e. it does not produce the optimal Q-function. One idea is to recover many Q-functions:

Algorithm 15 Recover many Q-functions

1: train ψπk(st, at) for many policies via Bellman updates
2: get some reward samples {(s, r)i}
3: w← arg minw ∑i

∥∥φ(si)
⊤w− ri

∥∥2

4: recover Qπ(st, at) ≈ ψπk(s, a)⊤w for every πk
5: π′(s) = arg maxa maxk ψπk(s, a)⊤w

In the continuous case, we can frame successor representations as classification: take F = 1{sfuture is a future state from st, at under π}.
Then

pπ(sfuture | st, at) = pπ(sfuture)
pπ(F = 1 | st, at, sfuture)

pπ(F = 0 | st, at, sfuture)
.

pπ(sfuture is a constant independent of st, at, so really we care most about the classifier. We can
train it simply by sampling from pπ and applying a cross-entropy loss.

13 Exploration (10/04)

The videos begin here.

Example 13.1. Montezuma’s revenge is pretty hard for RL. It understands that getting a key is a
reward and opening a door is a reward, but getting killed by a skull doesn’t have any positives or
negatives (you start over). Finishing the game only weakly correlates with rewarding events. We
only know what to do because we understand what keys and skulls mean symbolically.

This becomes more difficult as you extend the task or know less about the rules.

Definition 13.2. Exploitation is doing what you know will yield the highest reward. Exploration
is doing things you haven’t done before, in the hopes of getting even higher rewards.

Question 13.3. Can we derive an optimal exploration strategy? What does optimal mean?
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In general, it may not be possible to determine optimality (consider, for instance, an infinite MDP
or continuous state space). We’ll adapt theory from smaller cases, e.g. multi-armed bandits (1-step
stateless RL problems) to intractable ones.

You can think of a one-armed bandit as a slot machine and a multi-armed bandit problem as N
slot machines. In the one-armed case, you decide whether to play (there’s only one action), and in
the multi-armed case, you care about which machine to use.

Define r(ai) ∼ pθi (for example, Bern(θi)). Suppose we have some prior θi ∼ p(θ). Each time
you pull an arm, you can update your belief state p̂(θ1, . . . , θn). But solving the POMDP is very
overkill: p might be super complicated with nonzero correlations between θi’s and so on. It turns
out that we can do pretty well with much simpler strategies, and say that a strategy is optimal if
its reward is Θ(POMDP optimal).

Formally, our objective is to minimize

regret(T) = TE[r(a∗)]−
T

∑
t=1

r(at).

Optimistic exploration

We can take a = arg max(µ̂a + Cσa), where µ̂a is the average reward so far and σa is a variance

estimate. It turns out that using a = arg max
(

µ̂a +
√

2 ln T
N(a)︸ ︷︷ ︸

exploration bonus

)
, where N(a) is the number of

times we have picked a, yields regret O(log T).

You can use the same idea with any MDP. Suppose you maintain an exploration counter N(s) or
N(s, a). Then r+(s, a) := r(s, a) + B(N(s)), where B is a bonus that decreases with N(s), can be
used as a replacement for r in any model-free algorithm.

This doesn’t work in the case of large or continuous environments, where it will be very unlikely
to see the same state more than once. A workaround is to fit a density model pθ(s) (how likely is
it to see s?). We fit a model to “pseudo-counts”; see Figure 11.

There are several possible bonuses B we can use, like the UCB bonus
√

2 ln T/N(a) above or√
1/N(a). There are probably reasons for choosing specific ones, but they all work.

pθ(·) is designed to produce output densities, but it doesn’t necessarily need to produce good
samples (i.e., the opposite considerations as a GAN or VAE).

There are several ideas in the literature providing alternative implementations of optimism:

• Compress s into a k-bit code via φ(s) (a lossy compression; you’ll get collisions), then count
N(φ(s)). Tang et al. [37] You learn a compression such that similar states get the same hash
(and need to mess with code lengths so that you get an appropriate number of collisions).

• A state is novel if it is easy to distinguish from all previous seen states by a classifier. So we
can fit a classifier pθ(s) =

1−Ds(s)
Ds(s)

using an amortized model Fu et al. [8].
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Figure 11: Exploring with pseudo-counts

Probability matching/posterior sampling

The idea is to sample θ1, . . . , θn ∼ p̂(θ1, . . . , θn), take the optimal action according to the current
belief, and update the model. This is hard to analyze theoretically, but has strong empirical per-
formance.

In the bandit setting, we always act greedily, so p̂(θ1, . . . , θn) is a distribution over rewards. The
MDP analog is the Q-function: we can sample a Q-function Q from p(Q), act according to Q
for one episode, then update it. To sample a function, we can use a bootstrap: given a dataset
D, resample with replacement to get D1, . . . ,DN . Train each model fθi on Di, and use fθi with i
selected uniformly at random. You can simulate this by making N “heads” (use one network, plus
N copies of the last layer), so you don’t have to train N networks separately.

This is a convenient trick because you don’t have to change the original reward function. How-
ever, setting a good bonus typically performs better.

Information gain

Suppose we want to determine some latent variable z, e.g. the optimal action. Let H( p̂(z)) be the
current entropy of our z estimate, and we take some action y and observe y. We want to maximize
the drop in entropy, or equivalently the information gain.

IG(z, y | a) = Ey[H( p̂(z))−H( p̂(z) | y) | a]

Example 13.4 (Russo and Van Roy [29]). Take y = ra and z = θa. Let g(a) = IG(θa, ra | a) and
∆(a) = E[r(a∗)− r(a)]. Choose a according to arg mina

∆(a)2

g(a) .

In general, it’s intractable to use information gain exactly, regardless of what is being estimated,
so we’ll need to approximate it:
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Figure 12: Variational Autoencoder

• Prediction gain: if the density changes a lot, then the last state was novel: logpθ′
(s)− log pθ(s)

• Variational inference: learn about the transitions pθ(st+1 | st, at), and write the information
gain as DKL(p(θ | h, st, at, st+1) ∥ p(θ | h)), where h denotes the history.

There’s some more literature on this, but I was too tired to listen to the rest of the lecture.

14 Exploration (10/09)

The videos begin here.

Question 14.1. What if we want to recover diverse behavior without any reward function? This
is good for learning skills without supervision and using them to accomplish goals, learning sub-
skills for hierarchical RL, and exploring the space of possible behaviors.

For example, you might have a general purpose robot which you put in your home, and want it
to be able to prepare for an unknown future goal (e.g. wash the dishes).

First, some math review:

• EntropyH(p(x)) = −Ex∼p log p(x), intuitively, measures how “broad” p(x) is

• Mutual information

I(x; y) = DKL(p(x, y) ∥ p(x)p(y)) = E(x,y)∼p log
p(x, y)

p(x)p(y)
= H(p(y))−H(p(y | x))

Intuitively, if x and y are independent, then the joint distribution and product of marginals
are the same, and the KL divergence is 0. As they grow more dependent, the joint distribu-
tion gets farther away, and the KL divergence changes accordingly.

For example, empowerment is I(st+1; at) := H(st+1)−H(st+1 | at).

We’ll use π(s) = pπθ
(s) to denote the state marginal.

In the example above, maybe we’ll pass in some images x and xg representing the current and
goal states (your dishes are in a pile, or they are cleaned at neatly organized). The RL agent will
have some latent representations of these images z and zg, as given by a VAE (see Figure 12).

The idea is that we’ll provide it some input x, it’ll construct a latent representation z, and through
unsupervised learning generate its own goals zgi . This will give something similar to Algo-
rithm 16. We take w(x) = pθ(x)α for some α ∈ [−1, 0) (reusing our idea of counts in the past).
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The idea for weighting is that it will help us skew our samples toward less-used latent representa-
tions. (Otherwise, our model will do well at picking up a cup, for example, generate more images
of picking up a cup, and not learn how to do anything else.) The key result is that α ∈ [−1, 0) will
result in an increase in the entropyH(pθ(x)).

Algorithm 16 Sketch: Learning without rewards

1: for repeat K times do
2: Propose goal: zg ∼ p(z), xg ∼ pθ(· | zg)

3: Run a goal-conditioned policy π(a | x, xg), which ultimately reaches x
4: Use data to update π

5: θ, φ← arg maxθ,φ E[w(x) log p(x)]
6: end for

Skew-fit (sort of) maximizes H(p(G)), as we want good state coverage. RL trains π(a | S, G)

to reach G, i.e. p(G | S) becomes more deterministic, or effective goal reaching. Intuitively, this
means that we are maximizingH(p(G))−H(p(G | S)) = I(S; G).

Distribution matching

In the typical formulation, we want to incentivize our policy π(a | s) to explore diverse states, so
we can add a bonus r̂(s) = r(s)− log pπ(s).

Another problem worth considering is matching state marginals: we want to learn π(a | s) to
minimize DKL(pπ(s)||p∗(s)); this seems fairly similar conceptually, so maybe it’s possible to apply
the same ideas from intrinsic motivation. He says some-

thing about
why π jumps,
but I don’t
quite get it.

Naively, We can set r̂(s) = log p∗(s)− log pπ(s). One can notice that the RL objective is exactly
the KL-divergence, since we are taking the expectation over pπ. So this doesn’t perform marginal
matching for the reason that pπ is dependent on π. We can apply a simple fix to produce Al-

what does this
mean?

gorithm 17. One can view it as a Nash equilibrium to a two-player game between πk and pπk

(supposedly the mixture of πk’s produces an equilibrium by a well-known result in game theory).

Algorithm 17 State Marginal Matching

1: learn πk(a | s) to maximize Eπ[r̂k(s)]
2: update pπk(s) to fit all states seen so far
3: return π∗(a | s) = ∑k πk(a | s)

Question 14.2. Why is state coverage a good objective?

Answer. Suppose you have an adversary that will choose the worst possible goal G. It is possible
to show that the best possible goal distribution to use during training is p(G) = arg maxpH(p(G)),
i.e. uniform. In a similar vein, we should try to visit all states uniformly.

Learning diverse skills

Suppose you have several policies π(a | s, z) indexed by the task index z. (Note that tasks are
a strict superset of goals: not all behaviors can be captured by goal-reaching, e.g. eating a candy
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Figure 13: Overview of RL methods

while avoiding lava.) Intuitively, then, different skills should visit different state space regions,
not just individual states.

You can implement this with

π(a | s, z) = arg max
π

∑
z

Es∼π(·|z)[r(s, z)],

where r(s, z) is high at z but low for z′ ̸= z. In particular, taking r(s, z) as a classifier log p(z |
s) suffices. The idea is that reward is maximized when classification is easy, i.e. the decision
boundary between skills pushes them apart. In an information-theoretic context, we can treat the
objective as I(z, s) = H(z)−H(z | s): the former is maximized with a uniform prior, and the latter
is minimized by maximizing log p(z | s)

15 Offline RL (10/16)

The videos begin here.

There is a large gap between the RL tasks we’ve looked at so far and common supervised learning
tasks. For example, if we want to run an image generation task, it is impractical to have an online
process (ImageNet is just too massive). Modern ML works well because of massive data and
massive models, which is hard for RL as we’ve seen so far. The question is whether we can
develop similarly data-driven RL methods.

Formally, we will have a dataset D = {(si, ai, s′i, ri)}. You don’t know how this data is acquired,
but there is some underlying πβ with a ∼ πβ(· | s). The state marginal s ∼ dπβ , and as before
s′ ∼ p(s′ | s, a), and r is a function of s and a.

Offline RL problems take the same forms that their online varieties do. Given D, we might want
to estimate J(πβ) = Eτ∼πβ

[
∑T

t=1 r(st, at)
]

(off-policy evaluation), or we might want to learn θ to
produce the “best possible policy πθ given D.”
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Offline RL is distinct from imitation learning (in fact, it is provably better than imitation learning,
under some assumptions Kumar et al. [19]). There, we had several trajectories that ended up at
a goal and learned a corresponding policy. Here, we can “get order from chaos”: we might have
several trajectories that don’t seem to go anywhere, but by stitching them together/generalizing
better, we can do better than the best data example.

The fundamental problem is counterfactual queries. Suppose you have a dataset of driving data.
You’ll get some errors, e.g. running a red light, but probably nothing like driving off a cliff; we
wouldn’t know if such an action is good or bad unless we see it in the data. Online algorithms
don’t have to handle this because they can just try it, while offline methods must account for OOD
actions safely. Errors with function approximation in standard RL are much more severe in online
RL: in the online setting, we can just tesst things, but generalizability cannot be easily corrected
without data.

Recall that the deep learning problem boils down to empirical risk minimization,

θ ← arg min
θ

Ex∼p(·),y∼p(·|x)[L(y, fθ(x))].

“Distribution shift” means that this fails if we instead sample x from p̄ ̸= p. Even if we sample x∗

from p, the loss at x∗ might still be high: just because it is low in expectation, it might not be low for
a particular point. Usually we aren’t worried about this because neural nets generalize pretty well,
but for example an adversary might choose x∗ ← arg maxx fθ(x). Similarly, in Q-learning, we take
y(s, a) ← r(s, a) + Ea′∼πnew [Q(s′, a′)], and the objective is minQ Es,a∼πβ

[(Q(s, a)− y(s, a))2]. This
setup results in:

• We get good accuracy when πβ(a | s) = πnew(a | s). This isn’t great given that we want to
improve upon the data rather than imitate it.

• We take πnew = arg maxπ Ea∼π(·|s)[Q(s, a)], which is roughly the same problem described
above. πnew is selected adversarially to produce large Q-values, which results in massive
overestimation.

Importance Sampling

Next, we will pivot to an early development in offline RL. Recall that in importance sampling, we
can produce an unbiased estimator for ∇θ J(θ) by using importance sampling with weight

πθ(τ)

πβ(τ)
=

p(s1)

p(s1)
∏

t

p(st+1|st, at)πθ(at|st)

p(st+1|st, at)πθ(at|st)
= ∏

t

πθ(at|st)

πβ(at|st)
.

However, this is exponential in T, and weights are likely to be degenerate as T becomes large (one
weight will blow up, and the rest will vanish). That is, the expectation is always the same, but the
variance grows with T.

In the advanced policy lecture, we noted that this product can be split into

t−1

∏
t′=0

πθ(at|st)

πβ(at|st)
·

T

∏
t′=t

πθ(at|st)

πβ(at|st)
.

The first term accounts for the difference in dπβ(st) and dπθ (st), and the second term accounts for
having the incorrect Q̂. Previously, we dropped the first term because we assumed that πθ and
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Figure 14: Further simplifying the policy gradient. We can change T to t′ as the upper limit because
actions in the future don’t affect rewards in the past.

Figure 15: Zhang et al. [42]

πβ were similar enough. We can’t do that anymore in the offline RL setting, but for the sake of
explanation we’ll do it anyway. See Figure 14. This is still exponential but does a little better.

The idea of the doubly robust estimator is to just use the same estimator we just found,

Vπθ (s0) ≈
T

∑
t=0

(
t

∏
t′=0

πθ(at′ |st′)

πβ(at′ |st′)

)
γtrt =:

T

∑
t=0

(
t

∏
t′=0

ρt′

)
γtrt = ρ0(r0 + γ(ρ1(r1 + · · · ))) =: V̄T,

where we’ve shifted indices for ease of notation. One can observe that V̄T+1−t = ρt(rt + γV̄T−t).
Doubly robust estimation takes VDR(s) := V̂(s) + ρ(s, a)(r(s, a)− Q̂(s, a)), so that

V̄T+1−t
DR = V̂(st) + ρt(rt + γV̄DRT − t− Q̂(st, at)).

In marginalized importance sampling, you can estimate J(θ) ≈ 1
N ∑i w(si, ai)ri. You can de-

termine w(s, a) by solving some consistency condition, i.e. write down a relationship and corre-
sponding error between w’s at current and future states, and estimate the error using samples
from the dataset. For example, see Figure 15.

Linear Fitted Value Functions

Let Φ be a feature matrix with dimensions |S| × K, where K is the number of features. With a
linear model, we will have:

• The reward model Φwr ≈ r where wr = (Φ⊤Φ)−1Φ⊤r ∈ RK.

• The transition model ΦPΦ ≈ PπΦ, where Pπ ∈ R|S|×|S| is the real transition matrix and
PΦ = (Φ⊤Φ)−1ΦPπΦ ∈ RK×K .

• The value function Vπ ≈ Vπ
Φ = ΦwV .

Then the Bellman backup Vπ = r + γPπVπ implies Vπ = (I − γPπ)−1r, or equivalently wV =

(I − γPΦ)
−1wr in feature space. Substituting, we get

wv = (Φ⊤Φ− γΦ⊤PπΦ)−1Φ⊤r,
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called least squares temporal difference (LSTD). On its own, this runs into some problems.

• We can’t use this directly in practice unless we know Pπ. But we can estimate this with
samples; suppose we haveD = {(si, ai, ri, s′i)}. Then everything works exactly the same way
(now with some sampling error), where instead Φ′ has dimensions |D| × K with Φ′i = φ(s′i).

• We can’t use this method for policies other than the one that collected the data, since Pπ is
dependent on π.

We can resolve both of these with least-squares policy iteration (LSPI) by estimating a Q-function
instead of a value function. Now we have Φ ∈ R|S||A|×K′ , where Φ′i = φ(s′i, π(s′i)). Then comput-
ing wQ = (Φ⊤Φ− γΦ⊤Φ′)−1Φ⊤r suffices, where we update πk+1(s) = arg maxa ϕ(s, a)wQ(πk) and
set Φ′i = φ(s′i, πk+1(s′i)).

In practice, this doesn’t work well because in the argmax step, we experience distributional shift.

16 Offline RL (10/18)

The videos begin here.

Recall that with our update step

πnew = arg max
π

Ea∼π(·|s)[Q(s, a)],

our algorithm will make adversarial updates to fool our Q-function to take actions with erro-
neously high Q-values. To make practical RL algorithms, we have to resolve this distributional
shift problem.

Implicit Policy Constraints

One very old way of dealing with this is to constrain your policy, DKL(π∥πβ) ≤ ε in the argmax.
However, this has several issues:

• We don’t know the behavior policy πβ(a|s), so we have to be careful in our estimation of the
KL divergence term.

• It may not be pessimistic enough. Suppose that you have something true in expectation; that
doesn’t mean that you can expect the same for any individual data point. Likewise, we are
stuck trying to strike a balance between moving π close enough to β while also far enough
that it reaches convergence.

• It may be too pessimistic. Suppose πβ is uniformly random, i.e. any action is equally likely.
Then the KL condition means that we should keep π roughly uniform, even though it prob-
ably isn’t a good choice.

Another idea to explicitly constrain our policy is to apply a support constraint, e.g. π(a|s) ≥ 0
only if πβ(a|s) ≥ ε. As in Figure 16, this is a bit closer to what we want, but hard to implement.

So we’ll try to elaborate some more on the first method. One can prove through duality that

π∗(a|s) = 1
Z(s)

πβ(a|s) exp
(

1
λ

Aπ(s, a)
)

,
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Figure 16: Explicit policy constraint methods

and as such we can approximate

πnew(a|s) = arg max
π

E(s,a)∼πβ

[
log π(a|s) 1

Z(s)
exp

(
1
λ

Aπold(s, a)
)]

.

We can compute the expectation through sampling from the dataset, and the critic can be used to
compute the advantage. Peng et al. [27]

At a high level, this is essentially behavioral cloning, where we choose the good actions more often
than the bad ones.

However, this runs into two sources of distributional shifts while querying advantage values:

• In the target value while computing the expectation over πθ in our update Q(s, a) = r(s, a)+
Ea′∼πnew [Q(s, a)] via the critic gradient step with

LC(φ) = E(s,a,s′)∼D

[
(Qφ(s, a)− (r(s, a) + γEa′∼πθ(a′|s′)[Qφ(s′, a′)]))2

]
.

It will obey “the constraint” by the end of training with a good choice of λ, but not necessar- whatever this
is?ily during training.

• When estimating the advantage, we query for actions from πθ .

Question 16.1. Is it possible to avoid all OOD actions in the Q update?

Answer. It is insufficient to update

V ← arg min
V

1
N

N

∑
i=1

ℓ(V(si), Q(si, ai)),

because ai ∼ D comes from πβ, not πnew.

However, notice that in the case of very large |S| or continuous states, really we have a distribution
over V(s) when we consider the possibility of similar state-action pairs. In the case of MSE loss,
we are asking for the expectation over actions. We can avoid problems by instead considering the
value of the best policy supported by the data via the expectile loss

ℓτ(x) =

{
(1− τ)x2 x > 0

τx2 else.
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The idea is that for τ > 1
2 , the loss penalizes negative errors more than positive ones. It is possible

to show that for a sufficiently large τ, the update is simply

V(s)← max
a∈Ω(s)

Q(s, a),

where Ω(s) :=
{

a : πβ(a|s) ≥ ε
}

is the support over actions. The algorithm, called IQL Kostrikov

et al. [17], produces the implicit policy πnew(a|s) = 1

{
a = arg maxa∈Ω(s) Q(s, a)

}
.

Note. It is also possible to constrain the policy explicitly. We can modify the actor objective as

θ ← arg max
θ

Es∼D [Ea∼πθ(·|s)[Q(s, a) + λπβ(a|s)] + λH(π(a|s))],

where λ is a Lagrange multiplier. This setup produces DKL(π∥πβ) = −Eπ[log πβ(a|s)]−H(π).

Or you can modify the reward function directly, r̄(s, a) = r(s, a)− DKL(π∥πβ) (or another diver-
gence metric of your choice).

In practice, most of these methods don’t work very well.

Conservative Q-Learning

Another way to mitigate adversarial updates in the Bellman backup is to directly fix the backup.
An idea to directly counteract this behavior is

Q̂π = arg min
Q

(
max

µ
αEs∼D,a∼µ(·|s)[Q(s, a)]︸ ︷︷ ︸

always pushes down Q-values

+E(s,a,s′)∼D
[
(Q(s, a)− (r(s, a) + Eπ[Q(s′, a′)]))2]︸ ︷︷ ︸

regular objective

)

It is possible to show that Q̂π ≤ Qπ for large enough α, so it is too pessimistic. So we will resolve
this by pushing back up on samples in the data, Kumar et al. [18]

Q̂π = arg min
Q

(
max

µ
αEs∼D,a∼µ(·|s)[Q(s, a)]− αE(s,a)∼D [Q(s, a)]

+E(s,a,s′)∼D
[
(Q(s, a)− (r(s, a) + Eπ[Q(s′, a′)]))2] )︸ ︷︷ ︸

LCQL(Q̂π)

The idea is that if the actions are from the dataset, the two terms should balance out. If they are
out-of-distribution, though, they will be penalized, and the more actions will be pushed into the
distribution.

In this setting, it is possible to prove that Ea∼π(·|s)[Q̂π(s, a)] ≤ Ea∼π(·|s)[Qπ(s, a)] for all s ∈ D.
In the algorithm, you repeatedly update Q̂π wrt LCQL using D, then update π. If the actions are
discrete, then you can just use the greedy policy

π(a|s) = 1

{
a = arg max

a
Q̂(s, a)

}
.
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In the continuous case, you can use an actor-critic method,

θ ← θ + α∇θ ∑
i

Ea∼πθ(a|si)[Q̂(si, a)].

One might want to subtract a regularizer R(µ); a common choice is R = Es∼D[H(µ(·|s))]. In
this case, we can compute the optimal choice as µ(a|s) ∝ exp Q(s, a), or Ea∼µ(·|s)[Q(s, a)] =

log ∑a exp Q(s, a). In the discrete case, these can be computed directly; in the continuous case,
you can use importance sampling.

Model-Based Offline RL

An idea to punish the policy for exploring is to impose a penalty r̃(s, a) = r(s, a) − λu(s, a) Yu
et al. [40]. In fact, it is possible to prove some theoretical guarantees, where the true return of the
policy trained under the model improves over the behavior policy, and moreover performs as well
as the optimal policy minus a constant.

Another idea is to apply CQL, where instead of the maxµ term that handles adversarial inputs, we
can just take the expectation over state-action tuples from our model Yu et al. [41].

It is possible to plan while handling ood actions without explicitly constructing a policy. One idea
is the trajectory transformer, where we train a joint state-action model that provides probabilities
pβ(τ) = pβ(s1, a1, . . . , sT, aT). We will optimize for a plan that has high probability under pβ.
For an offline model, we can afford to use a more expressive model class, since we don’t have
to update our model between trials. The most powerful sequence density estimator today is a
transformer. The idea is to use a sequence model over dimensions of states and actions, i.e. at each
time step it predicts the corresponding dimensions. Janner et al. [14]

Summary

17 RL Theory (10/23)

The videos begin here.

Suppose we’re using an algorithm with N samples and k iterations. Can we provide some guar-
antee

∥∥Q̂k −Q∗
∥∥ ≤ ε with probability at least 1− δ for sufficiently large N? Alternatively, can we

bound ∥Qπk −Q∗∥? (This is different, since Q̂k might be an erroneous estimator for it.) Or can we
give a bound on regret over time?

The purpose of theoretical analysis is not to provide any provable guarantees that work well in
practice; typically strong, unrealistic assumptions are required. At best, it is a rough guide to what
might happen. This provides some qualitative pros and cons of certain algorithms — sometimes,
they are very useful in guiding our choices of parameters, and so on.

First, we state some useful results we will use throughout the lecture:

Theorem 17.1 (Hoeffding’s inequality). Let X1, . . . , Xn be iid with mean µ, and suppose that Xi ∈
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Figure 17: Which offline RL algorithm should I use?

Figure 18: Why offline RL works well
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[a, b] w.p. 1. Let X̄n = 1
n ∑n

i=1 Xi. Then

P(X̄n ≥ µ + ε) ≤ exp
(
− 2nε2

(b− a)2

)
.

Equivalently, if we want this probability to be δ, we can take ε ≤ b−a√
2n

√
log 2

δ or n ≤ (b−a)2

2ε2 log 2
δ .

Theorem 17.2 (Concentration for discrete distributions). Let Z ∼ Categorical(q) take values in
[d]. That is, qi = P(Z = i). Let our empirical estimate from N samples be q̂i =

1
N ∑N

j=1 1
{

zj = i
}

.
Then

P

(
∥q̂− q∥2 ≥

1√
N

+ ε

)
≤ exp

(
−Nε2)

P

(
∥q̂− q∥1 ≥

√
d
(

1√
N

+ ε

))
≤ exp

(
−Nε2).

This time, this is equivalent to ε ≤ 1√
N

√
log 1

δ or N ≤ 1
ε2 log 1

δ .

Model-based RL

Suppose we have N samples s′ ∼ p(·|s, a) for all s, a, and we define p̂(s′|s, a) = #(s,a,s′)
N , and we’ll

estimate Q̂π via p̂. We might be interested in the following questions: if you take sufficiently large
N, can we achieve the following worst-case bounds with probability at least 1− δ?

• How bad is our estimate, i.e. can we bound
∥∥Qπ(s, a)− Q̂π(s, a)

∥∥
∞ := maxs,a

∣∣Qπ(s, a)− Q̂π(s, a)
∣∣ ≤

ε?

• How good is our optimal Q-function learned under p̂, i.e. can we bound
∥∥Q∗(s, a)− Q̂(s, a)

∥∥
∞ ≤

ε?

• How good is the resulting policy, i.e. can we bound
∥∥Q∗(s, a)−Qπ̂(s, a)

∥∥
∞ ≤ ε?

It turns out that the first question applies very easily to the other ones, so we’ll focus mostly on it.

Recall that we can write updates as Qπ = r + γPVπ, where Qπ, r ∈ |S||A|, P ∈ |S||A| × |S|,
and Vπ ∈ |S|. We can also write Vπ = ΠQπ for some Π ∈ |S| × |S||A|. Equivalently, if we let
Pπ = PΠ, then we can rewrite this as Qπ = (I − γPπ)−1r.

Lemma 17.3 (Simulation lemma). Qπ − Q̂π = γ(I − γP̂π)−1(P− P̂)Vπ.

Proof.

Qπ − Q̂π = Qπ − (I − γP̂π)−1r

= (I − γP̂π)−1(I − γP̂π)Qπ − (I − γPπ)−1(I − γPπ)Qπ

= γ(I − γP̂π)−1(Pπ − P̂π)Qπ

= γ(I − γP̂π)−1(P− P̂)Vπ.

■
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Lemma 17.4. For any v ∈ |S||A|,
∥∥(I − γPπ)−1v

∥∥
∞ ≤

∥v∥∞
1−γ .

Proof. Let w := (I − γPπ)−1v, so that

∥v∥∞ = ∥(I − γPπ)w∥∞ ≥ ∥w∥∞ − γ ∥Pπw∥∞ ≥ (1− γ) ∥w∥∞ .

Rearranging completes the proof. ■

Proposition 17.5. There exists a constant c for which

∥∥Qπ − Q̂π
∥∥

∞ ≤
γ

(1− γ)2 c

√
|S| log 1/δ

N
.

Proof. Combining the two lemmas,∥∥Qπ − Q̂π
∥∥

∞ =
∥∥∥γ(I − γP̂π)−1(P− P̂)Vπ

∥∥∥
∞

≤ γ

1− γ

∥∥(P− P̂)Vπ
∥∥

∞

≤ γ

1− γ

(
max

s,a

∥∥P(·|s, a)− P̂(·|s, a)1
∥∥

1

)
∥Vπ∥∞ .

Now, we bound each term: there exists a constant c satisfying

∥∥P̂(s′|s, a)− P(s′|s, a)
∥∥

1 ≤ c

√
|S| log 1/δ

N
,

and if Rmax = 1, then

∥Vπ∥∞ ≤
∞

∑
t=0

γtRmax =
1

1− γ
.

Combining, the desired result follows. ■

In particular, the (1− γ)−2 component means that the error accumulates quadratically in the hori-
zon. Some corollaries:

If we want to bound the error on our estimated Q-value under the optimal policy in each case,

∥∥Q∗ − Q̂∗
∥∥

∞ =

∥∥∥∥sup
π

Qπ − sup
π

Q̂π

∥∥∥∥ ≤ sup
π

∥∥Qπ − Q̂π
∥∥

∞ ≤ ε.

If we want to bound the error on the true Q-values,∥∥∥Q∗ −Qπ̂∗
∥∥∥

∞
=
∥∥∥Q∗ − Q̂π∗

∥∥∥
∞
+
∥∥∥Qπ̂∗ − Q̂π∗

∥∥∥
∞
≤ ε + ε = 2ε

from our two preceding results.
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Figure 19: Sampling error

Model-free RL

Let TQ = r + γP maxa Q(·, a) denote the Bellman operator, so that Qk+1 = TQk. Q-iteration will
look like Q̂k+1 ← arg minQ̂

∥∥Q̂− T̂Q̂k
∥∥. There are two sources of error, namely in sampling error

in T̂ (which is built on approximates r̂ = 1
N(s,a) ∑i 1{(si, ai) = (s, a)}ri and P̂ = N(s,a,s′)

N(s,a) ) and the

approximation error in the minimization Q̂k+1 ̸= T̂Q̂k.

The analysis of sampling error is in Figure 19. The conclusion is that there exist constants c1, c2 for
which ∥∥T̂Q− TQ

∥∥
∞ ≤ 2Rmaxc1

√
log |S||A|/δ

2N
+ c2 ∥Q∥∞

√
log |S|/δ

N
.

We will assume that the approximation error is bounded,
∥∥Q̂k+1 − TQ̂k

∥∥
∞ ≤ εk. Then∥∥Q̂k −Q∗

∥∥
∞ ≤

∥∥Q̂k − TQ̂k−1
∥∥

∞ +
∥∥TQ̂k−1 −Q∗

∥∥
∞

≤ εk−1 +
∥∥TQ̂k−1 − TQ∗

∥∥
∞

≤ εk−1 + γ
∥∥Q̂k−1 −Q∗

∥∥
∞ .

In the second line, we note that TQ∗ = Q∗, and in the third line, T is a γ-contraction. By induction,

∥∥∥Q̂k −Q∗
∥∥∥

∞
≤

k−1

∑
i=0

γiεk−i−1 + γk ∥∥Q̂0 −Q∗
∥∥

∞ .

In the limit,

lim
k→∞

∥∥Q̂k −Q∗
∥∥

∞ ≤
∞

∑
i=0

γi ∥ε∥∞ =
∥ε∥∞
1− γ

.

18 Variational Inference and Generative Models (10/25)

The videos begin here.
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VAE

This is a bit of a break from RL, but many of the same ideas are applicable to latent variable models
in model-based RL.

A classic example of a latent variable model is a mixture model; for example, suppose that we
collect data x, and it very clearly comes in some clusters. We can let z be a categorical variable
representing the clusters, and note that

p(x) = ∑
z

p(x|z)p(z).

For conditional models,
p(y|x) = ∑

z
p(y|x, z)p(z).

In general, latent variable models take the following form: p(x) is complicated (it is hard to find,
for example, a Gaussian that fits x well). We’ll take some p(z) as an easy distribution to deal
with, e.g. a Gaussian, and p(x|z) is another Gaussian with mean µnn(z) and variance σ2

nn(z). (The
parameters to the latter Gaussian are probably complicated, but the model itself is quite simple.)
Then

p(x) =
∫

p(x|z)p(z)dz.

This works well in RL in settings such as multimodal policies and for model-based RL.

Of course, training this directly is hard to do: if we have some dataD = {xi}, then our objective is
arg maxθ

1
N ∑i log pθ(xi) = arg maxθ

1
N ∑i log

(∫
pθ(xi|z)p(z)dz

)
, and computing the integral each

time is intractable. An alternative is to use the expected log-likelihood

θ ← arg max
θ

1
N ∑

i
Ez∼p(·|xi) log pθ(xi, z).

To do so, we must first calculate p(z|xi), which we do via the variational approximation. Suppose
we take qi(z) ≈ N (µi, σi). Then

log p(xi) = log
∫

p(xi|z)p(z)dz

= log
∫

p(xi|z)p(z)
qi(z)
qi(z)

dz

= log Ez∼qi

[
p(xi|z)p(z)

qi(z)

]
≥ Ez∼qi

[
log

p(xi|z)p(z)
qi(z)

]
= Ez∼qi [log p(xi|z) + log p(z)] +H(qi)

=: Li(p, qi).

The benefit is that every term is tractable. We claim that it is a good idea to maximize this lower
bound, which “pushes up” on log p(xi), but without additional analysis is insufficient to deduce
that it is a good proxy.
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Remark. The objective given by Li can be thought of as the sum of two terms: maximizing the first
term strives to make H(qi) small (we want z to be very close to the optimum), while the second
term regularizes it.

Some math verifies that

log p(xi) = DKL(qi(xi)∥p(z|xi)) + Li(p, qi).

This is another method of proving the lower bound we saw above, but more importantly, shows
that minimizing the KL divergence is a good way of tightening this bound. Equivalently, maxi-
mizing Li(p, qi) w.r.t. qi minimizes the KL divergence.

An issue with optimizing qi in this way is that making a µi, σi for every xi is that the number of
parameters scales linearly with the amount of data. So we can instead learn a network such that
qi(z) = q(z|xi) ≈ p(z|xi).

To recap, our amortized variational inference will have two networks: the generative model we
are trying to learn z 7→ pθ(x|z) and the inference network x 7→ qφ(z|x) = N (µφ(x), σφ(x)).

Algorithm 18 Variational Inference

1: for xi ∈ D do
2: sample z ∼ qφ(z|xi)

3: ∇θL ≈ ∇θ log pθ(xi|z)
4: θ ← θ + α∇θL
5: φ← φ + α∇φL
6: end for

Computing gradients through θ is easy, but it is not quite so obvious for φ. Here we outline two
methods:

• Policy gradient: We can write

Li = Ez∼qφ(z|xi)[r(xi, z)]︸ ︷︷ ︸
J(φ)

+H(qφ(z|xi)),

where r(xi, z) = log pθ(xi|z) + log p(z) does not depend on φ. In particular, we can draw
many samples

{
zj
}

and use the policy gradient,

∇J(φ) ≈ 1
M ∑

j
∇φ log qφ(zj|xi)r(xi, zj).

This works fine, as drawing samples is very efficient. The issue in practice is that policy
gradient has high variance, so you need a lot of samples to get a good estimate.

• Reparameterization trick: In RL, we used the policy gradient because we couldn’t differen-
tiate through unknown dynamics; that doesn’t exist here, and in fact there is a simple way
to improve this. Note that qφ(z|x) = N (µφ(x), σφ(x)) implies z = µφ(x) + εσφ(x), where
ε ∼ N (0, 1) is independent on φ. Now, we can differentiate as usual,

∇φ J(φ) ≈ ∇φr(xi, µφ(xi) + ε jσφ(xi)).
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(We couldn’t do this in RL because r wasn’t required to be differentiable! But we have a
differentiable closed form in this case.) With some math, we compute

Li ≈ log pθ(xi | µφ(xi) + εσφ(xi))− DKL(qφ(z|xi)∥p(z)).

In practice, we often only need M = 1 sample, and the implementation is very straightfor-
ward. However, it only works with continuous latent variables.

The form above is exactly the objective used for the variational autoencoder, maxθ,φ
1
N ∑i Li.

Example 18.1. We can regard z as a representation of x. Then in general, z is more useful in
representing the state than the individual pixels of s.

For example, in a video game, your character will consist of many pixels that move together, so
they will be highly correlated. The latent representation, which consists of independent Gaussians,
is better at capturing good features.

A sample algorithm might look like the following:

Algorithm 19 Sample VAE for RL Algorithm

1: for as long as you feel like do
2: Collect transition (s, a, s′, r), add it toR
3: Update pθ(s|z) and qφ(z|s) with batch fromR ▷ pretrain VAE with Atari dataset
4: Update Q(z, a) with batch fromR
5: end for

Note. Conditional models work in exactly the same way, i.e. the decoder now accepts xi as an
input and produces outputs pθ(yi|xi, z). At test time, we sample z ∼ p(·|xi) and y ∼ p(·|xi, z).

State space models

Our POMDP now has states replaced with their latent representations. That is, we will learn
several things, where we are using a VAE with data o1:T = (o1, . . . , oT) and latent representa-
tion z1:T = (z1, . . . , zT). For example, the following setup might work well, where we make zt’s
conditionally independent with respect to o1:t:

• Transition dynamics p(zt+1|zt, at), or p(z) = p(z1)∏t p(zt+1|zt, at) (we take z1 ∼ N (0, I)).

• Encoder pθ(o|z) = ∏t p(ot|zt).

• Decoder qφ(z|o) = ∏t qφ(zt|o1:t).

19 Control as Inference (10/30)

The videos begin here. The lecture is based on Levine [20].

Now we combine our ideas from the last few lectures. The idea is that one can use probabilistic
inference to derive RL and optimal control, and we can design RL algorithms based on these ideas.

We will avoid delving too deeply into philosophy and define a rational decision-maker as one
whose behaviors can be expressed with well-defined utilities. We will use this framework, com-
bined with optimal control, as a model for human behavior.
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Figure 20: Probabilistic graphical model for near-optimal control

One challenge is that RL doesn’t know what non-optimality is. For example, if you have a start
and end point, a human might not walk in a perfectly straight line from the start to the end. To
the human, it doesn’t really matter how they get to the goal — taking one wrong turn might not
matter that much, and their behavior is stochastic. Nonetheless, generally “good” behavior is still
the most likely.

Control as Exact Inference

We introduce a probabilistic graphical model of decision making that produces near-optimal be-
havior. The solution to near-optimal control will look similar to that for RL, but not exactly the
same.

We will construct independent optimality random variables Ot ∼ Bern(exp r(st, at)), where all
rewards are negative. (With finite rewards, this does not lose any generality; just subtract the
maximum from everything.) Then

p(τ|O1:T) =
p(τ,O1:T)

p(O1:T)
∝ p(τ) exp

(
∑

t
r(st, at)

)
.

The model is shown in Figure 20. The modeling choice is a bit odd, but we will see later that it
produces an elegant mathematical formulation.

Our method for inference looks something like the following:

1. Compute backward messages βt(st, at) = p(Ot:T|st, at)

2. Compute policy p(at|st,O1:T)

3. Compute forward messages αt(st) = p(st|O1:t−1)

Compute backward messages The setup is quite similar to a Hidden Markov Model or Kalman
Filter. Let’s do some math.

βt(st, at) = p(Ot:T|st, at)

=
∫

p(Ot:T, st+1|st, at)dst+1

=
∫

p(Ot+1:T|st+1)p(st+1|st, at)p(Ot|st, at)dst+1

= p(Ot|st, at)Est+1∼p(·|st,at)[p(βt+1(st+1))]
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where at each step we employ the Markov property. Next, observe that

p(Ot+1:T|st+1) =
∫

p(Ot+1:T|st+1, at+1)p(at+1|st+1)dat+1

= Eat∼p(·|st)[βt(st, at)],

where in the last line we have assumed that the action prior p(at+1|st+1) is uniform. Then:

Vt(st) := log βt(st) = log
∫

exp(Qt(st, at))dat.

Then as Qt(st, at) gets larger, Vt(st)→ maxat Qt(st, at) (a sort of softmax).

Qt(st, at) := log βt(st, at) = r(st, at) + log Est+1∼p(·|st,at)[exp(Vt+1(st+1))].

So the update is similar to a Bellman backup; in the deterministic case, we can get rid of the expec-
tation to obtain the original backup Qt(st, at) = r(st, at) + Vt+1(st+1). However, in the stochastic
case, it is too optimistic because we saw previously that the backup is a softmax.2

In the non-uniform case,

V(st) = log
∫

exp(Q(st, at) + log p(at|st)),

so we can just set the Bellman backup as

Q̃(st, at) = r(st, at) + log p(at|st) + log E[exp(V(st+1))],

and the same setup works. Equivalently, it suffices to define r̃(st, at) = r(st, at) + log p(at|st), i.e.
we can ignore the action prior.

Compute policy By definition,

π(at|st) = p(at|st,O1:T) = p(at|st,Ot:T) =
p(Ot:T|st, at)

p(Ot:T|st)
p(at|st) ∝

βt(st, at)

βt(st)
,

where in the last equality we have assumed a uniform action prior.

In particular, π(at|st) = exp(log βt(st, at)− log βt(st)) = exp(Qt(st, at)−Vt(st, at)) = exp(At(st, at)).
This is analogous to Boltzmann exploration.

Forward messages α1(s1) = p(s1) is known. For t ≥ 2,

αt(st) = p(st | O1:t−1)

=
∫

p(st, st−1, at−1 | O1:t−1)dst−1dat−1

=
∫

p(st | st−1, at−1,O1:t−1)p(at−1 | st−1,O1:t−1)p(st−1 | O1:t−1)dst−1dat−1

=
∫

p(st | st−1, at−1)p(at−1 | st−1,Ot−1)p(st−1 | O1:t−1)dst−1dat−1

=
∫

p(st | st−1, at−1)
p(Ot−1 | st−1, at−1)p(at−1 | st−1)

(((((((
p(Ot−1 | st−1)

(((((((
p(Ot−1 | st−1)p(st−1 | O1:t−2)

p(Ot−1 | O1:t−2)
dst−1dat−1.

2For example, suppose you are buying a lottery ticket. Your expected value isn’t good, but the log expected value of
the exponential is good. More generally, such an update would be over-reliant on lucky scenarios.
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Each term is tractable here because we know the dynamics, and p(st−1 | O1:t−2) = αt−1(st−1).

This setup enables us to compute

p(st | O1:T) =
p(Ot:T | st)p(st,O1:t−1)

p(O1:T)
∝ p(Ot:T | st)p(st | O1:t−1) = βt(st)αt(st).

Intuitively, we can regard β as the proportion of states with a high probability of reaching the goal
and α as the proportion of states with a high probability of being reached from the initial state.
Thus, the state marginals are the product of the two.

Control as Variational Inference

In complex state spaces or the dynamics are not known, we need to do approximate inference.

First, let us rationalize the issue with the optimism problem. The inference problem from earlier
(when marginalizing and conditioning) is p(at|st,O1:T) (the policy). Refer again to the lottery
example. This goes something like: “if you won a million dollars, what is the chance you won the
lottery?” Of course, this isn’t what we actually want, since the posterior and prior are distinct (the
evidence that you won a million dollars drastically changes your lottery chances). So the question
that we want to ask is more like: “given that you obtained high reward and that your transition
probabilities remain unchanged, what was your action probability?”

Formally, we want a distribution q(s1:T, a1:T) that is close to p(s1:T, a1:T|O1:T) but has dynamics
p(st+1|st, at). To do so, we proceed via variational inference: we only learn an action distribution
q(at|st) and take

q(s1:T, a1:T) = p(s1)∏
t

p(st+1|st, at)q(at|st).

Letting x = O1:T and z = (s1:T, a1:T), substituting into the variational lower bound

log p(x) ≥ Ez∼q[log p(x, z)− log q(z)]

yields

log p(O1:T) ≥ Es1:T ,a1:T∼q

[(
log p(s1) +

T

∑
t=1

log p(st+1|st, at) +
T

∑
t=1

log p(Ot|st, at)

)

−
(

log p(s1) +
T

∑
t=1

log p(st+1|st, at) +
T

∑
t=1

log q(st|at)

)]

= Es1:T ,a1:T∼q

[
∑

t
r(st, at)− log q(st|at)

]
= ∑

t
Es1:T ,a1:T∼q[r(st, at) +H(q(at|st))].

We can optimize this lower bound using the same strategies as in exact inference. For the base
case,

q(sT, aT) = arg max
q

EsT∼q
[
EaT∼q(·|sT)[r(sT, aT)− log q(aT|sT)]

]
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is optimized when we take q(aT|sT) ∝ exp(r(sT, aT)), or equivalently

q(aT|sT) = exp(Q(sT, aT)−V(sT)).

In the same way, where this time we use the regular Bellman backup Q(st, at) = r(st, at)+Est+1∼p(·|st,at)V(st+1),
we find the same optimizer at t.

RL Algorithms

Q-Learning is exactly the same as before, except that the value function iteration is performed as
V(s′) = log

∫
exp

(
Qφ(s′, a′)

)
da′.

Policy gradient with soft optimality imposes an entropy regularizer, i.e. the objective is

∑
t

Est,at [r(st, at)] + Est [H(π(at|st))].

This works better than the base policy gradient, which often results in entropy collapse in early
stages of training.

Haarnoja et al. [11] shows that soft Q-learning works well for pre-training. The authors use the
example of pre-training with the reward function being the speed of the ant. Soft Q-learning has
an entropy regularizer and will therefore send ants in different directions. Thus, if you have a
new task asking ants to go in a particular direction, it just needs to forget all the other directions.
In contrast, another agent trained to run in a different direction would need to unlearn the first
direction and relearn the second.

Soft actor-critic applies the same entropy regularizer to Q-function update,

Q(s, a)← r(s, a) + Es′∼p,a′∼π(·|s)[Q(s′, a′)− log π(a′|s′)].

20 Inverse RL (11/01)

The videos begin here.

In the past, we have explored problems where the reward function is provided to us. However, in
many cases, a reward function is difficult to specify, but perhaps we have lots of data of experts
performing the task successfully. We are interested in learning the reward function from experts
and using RL on this learned reward function.

In robotic imitation learning, we aim to copy the actions performed by the expert rather without
reasoning about the outcomes of those actions. Humans act differently, because we act according
the intent of the expert rather than imitating them. (Suppose that a human dropped an object on
the ground. Then the natural action would be to pick up that object, not to drop something on the
ground yourself.)

However, this problem is very underspecified; given the data, there are infinitely many possible
reward functions explaining the data (you want the data to satisfy some constraint, but figuring
out how strict the constraint should be is pretty difficult).

In both forward and backward RL, you are given states S and actionsA, and sometimes transition
probabilities p(s′|s, a). In forward RL, you are given a reward function r(s, a) and try to learn
π∗(a|s). In inverse RL, you are given trajectories {τi} sampled from π∗(τ), and you try to learn
rψ(s, a) and π∗(a|s).
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Learning the reward function

In the previous lecture, we saw that the reward function is given by the optimality variables. That
is, p(Ot|st, at; ψ) = exp

(
rψ(st, at)

)
, so by Bayes’ rule log p(τ|Ot; ψ) = log p(τ) + ∑t rψ(st, at). We

will learn ψ by maximum likelihood,

arg max
ψ

1
N

N

∑
i=1

log p(τi|O1:T; ψ) = arg max
ψ

1
N

N

∑
i=1

rψ(τi).

The issue is that you could choose ψ fairly arbitrarily given that the rewards happen to be high.
But the rewards might be even higher elsewhere, so in practice we apply a regularizer known as
the partition function:

arg max
ψ

1
N

N

∑
i=1

rψ(τi)− log Z Z :=
∫

p(τ) exp
(
rψ(τ)

)
dτ.

Then

∇ψL =
1
N

N

∑
i=1
∇ψrψ(τi)−

1
Z

∫
p(τ) exp

(
rψ(τ)

)
∇ψrψ(τ)dτ.

Observe that 1
Z

∫
p(τ) exp

(
rψ(τ)

)
amounts to a probability distribution over τ ∼ p(·|O1:T; ψ), i.e.

∇ψL = Eτ∼π∗ [∇ψrψ(τi)]−Eτ∼p(·|O1:T ;ψ)[∇ψrψ(τi)].

The first term is obtained by sampling the expert, and the second by running the soft-optimal
policy under the current reward we discussed last time:

Eτ∼p(·|O1:T ;ψ)[∇ψrψ(τi)] =
T

∑
t=1

E(st,at)∼p(·|O1:T ;ψ)[∇ψrψ(st, at)]

=
T

∑
t=1

∫∫
p(at|st,O1:T; ψ)p(st|O1:T; ψ)∇ψrψ(st, at)datdst.

The inside expression can be defined as

µt(st, at) ∝
β(st, at)

β(st)
· α(st)β(st) = β(st, at)α(st).

Substituting,

Eτ∼p(·|O1:T ;ψ)[∇ψrψ(τi)] =
T

∑
t=1

µ⊤t∇ψrψ,

where µ and r are length |S||A| vectors storing the values for each (st, at).

Note. Since we must compute the forward and backward messages, this method works for exact
inference, i.e. we must know the dynamics. Furthermore, it only works when |S| and |A| are
small.

In fact, this is known as the maximum entropy algorithm Ziebart et al. [43]. In the case where
rψ(st, at) = ψ⊤f (st, at), we can show that the optimization problem is equivalent to

max
ψ
H(πrψ) s.t. Eπ

rψ [ f ] = Eπ∗ [ f ].
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Approximations in High Dimensions

In the previous section, we found that the gradient of the objective is the difference of two terms:
the first by sampling {τi} from the expert, and the second by running the soft-optimal policy. The
first term is easy to do. For the second term, we can learn p(at|st,O1:T; ψ) using any max-entropy
RL algorithm, then run the resulting policy to generate samples

{
τj
}

. That is,

∇ψL ≈
1
N

N

∑
i=1
∇ψrψ(τi)−

1
M

M

∑
j=1
∇ψrψ(τj).

This is viable but computationally intractable, since we would need to run the policy to conver-
gence for each gradient step on rψ. An idea to improve the runtime is to just improve p(at|st,O1:T; ψ)

a little bit rather than learn it to convergence (i.e. lazy policy optimization). This means that our
estimate is biased due to sampling from the wrong policy, but we can simply use importance
sampling:

∇ψL ≈
1
N

N

∑
i=1
∇ψrψ(τi)−

1
∑j wj

M

∑
j=1

wj∇ψrψ(τj),

where

wj =
p(τ) exp

(
rψ(τj)

)
π(τj)

=
p(s1)∏t p(st+1|st, at) exp

(
rψ(st, at)

)
p(s1)∏t p(st+1|st, at)π(at|st)

=
exp

(
∑t rψ(st, at)

)
∏t π(at|st)

.

This algorithm is introduced in Finn et al. [6].

GANs

One might recognize that this setup is a bit like a game: in one step, the expert demonstrations
are made more likely and the current policy samples less likely. Then the policy is updated, mak-
ing it harder to distinguish them from the demos (one can see this because at convergence, the
importance sampling weights are all ones).

Recall the GAN setup: the generator accepts some random noise z and produce some distribution
pθ(x|z), which should resemble the true data distribution. Then some samples are collected from
the generator outputs pθ(x) and samples from the true data distribution, p∗(x). Then the discrim-
inator Dψ(x) emits a probability of x coming from p∗ versus pθ (a binary classification problem).
Then we alternately optimize the discriminator and generator,

ψ = arg max
ψ

1
N ∑

xi
iid∼p∗

log Dψ(x) +
1
M ∑

xj
iid∼pθ

log
(
1− Dψ(x)

)
θ = arg max

θ

Ex∼pθ
log Dψ(x).

In CS 182, we showed that

D∗(x) =
p∗(x)

pθ(x) + p∗(x)
.

With this setup, we can frame IRL as a GAN, where we use samples {τi} ∼ πθ as the generator. If
we use expert demonstrations according to p∗(τ), we can let

Dψ(τ) =
p(τ) 1

Z exp(r(τ))
pθ(τ) + p(τ) 1

Z exp(r(τ))
=

1
Z exp(r(τ))

∏t πθ(at|st) +
1
Z exp(r(τ))

,
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and optimize
ψ← arg max

ψ
Eτ∼p∗ [log Dψ(τ)] + Eτ∼πθ

[log
(
1− Dψ(τ)

)
].

Through some math, one can find that this in fact optimizes Z, and we don’t need the importance
weights anymore.

Remark. One can use a typical binary classification neural net, which may be a bit easier to set up.
However, the discriminator “knows nothing” at convergence, and the reward is lost.

20.1 RLHF Algorithms and Applications (11/06)

This is a guest lecture by Eric Mitchell (Stanford), with video here.

RLHF

A language model (LM) is an autoregressive model over tokens, i.e. LM π maps an input sequence
X = (x1, . . . , xn) to a distribution over the vocabulary V, xn+1 ∼ π(·|X). Accordingly, states are
token sequences, and actions are tokens (or sequences of tokens).

GPT-4 is the product of four steps:

Step 0: Unsupervised pre-training This is GPT-3. Just feed in a ton of scraped text (> 1T tokens)
with this autoregressive task. We will call the resulting policy πθ0 .

Step 1: Supervised fine-tuning Provide some human demonstrations: pass in prompt and some
good human responses. We will call the resulting polciy πθSFT .

Step 2: Fit a reward function The motivation for steps 2 and 3 (why bother with RL?) is that as
per usual, we seek to exceed human performance, not merely imitate it.

We want a reward function that assigns high reward to things humans like and low rewards
to things humans don’t like. Scoring things on a 1-10 scale is pretty hard (maybe you have a
recipe; two people will give different responses for their opinion on whether it’s well-written). It
is easy, however, to put two responses in front of people and ask which one is preferable. This
process enables us to collect a dataset D = {xi, yi

w, yi
ℓ}, where x’s are prompts, yw’s are “winning”

responses, and yℓ’s are “losing” responses.

The Bradley-Terry Model connects scores to preferences, asserting that P(a ≻ b) = σ(s(a)− s(b))
for some unobserved s. Thus, we simply learn rφ := s such that it aligns with our preferences,
running gradient ascent on

L(φ) = E(x,yw,yℓ)∼D log σ(rφ(x, yw)− rφ(x, yℓ)).

Remark. The whole setup is a bit silly, since the quality of a response is more intricate than a binary
decision. It’s somewhat surprising that it works so well.
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Figure 21: RLHF

Step 3: Learn a policy We will optimize

max
θ

Ex∼D,y∼πθ(·|x)rφ(x, y)− βDKL(πθ(y|x)∥πSFT(y|x)). (3)

The reason for the regularizer is that our reward model might be bad, and RL will push this to
progressively higher rewards when in reality the results are garbage because they stray too far
from the SFT policy. Typically, the policy is optimized with PPO, and we call the final policy πθRL .

And this recipe really does work! Humans prefer a 1.3B RLHF model to a 175B SFT model.

There are many variations of RLHF, e.g. implementing “latent cells” given by a judge of human
similarity improves diversity in CLIP, and Anthropic’s LLM Claude is based on RL with AI feed-
back.

Direct Preference Optimization

RLHF suffers from a few problems:

• Hard to implement

• Resource requirements (lots of different models!)

• Since the loss is based on the differences between rewards, there is an extra degree of free-
dom. In particular, you can’t even compare rewards across different inputs, which prevents
writing value functions or other desirable things.

DPO simplifies this process by removing the RL entirely: if we parameterize the reward function
correctly, then we can extract the optimal policy with no required learning.

Specifically, the solution to (3) is

π∗(y|x) = 1
Z(x)

πSFT(y|x) exp
(

1
β

r(x, y)
)

,
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Figure 22: Gradient of LDPO

where Z(x) is a normalizer so that the expression sums to 1. Note that it is intractable because the
sum is over all possible sequences of tokens y. But since we are only interested in differences in r,
this turns out not to matter:

r(x, y) = β log
π∗(y|x)

πSFT(y|x)
+ β log Z(x)

implies that we can run gradient ascent on

LDPO(πθ , πSFT) = E(x,yw,yℓ)∼D

[
log σ

(
β

πθ(yw|x)
πSFT(yw|x)

− β
πθ(yℓ|x)

πSFT(yℓ|x)

)]
.

In doing so, we’ve gotten rid of the extra degree of freedom (the precise value of Z(x) doesn’t
matter) while maintaining expressiveness.

Question 20.1.1. How do we make LLMs more factual?

Answer. See Tian et al. [38]. The idea is that you can sample “atomic claims,” e.g. “Yo-Yo Ma was
born in 1951.” So you can either scrape Wikipedia for this information or sample responses from
GPT-3.5 to extract the most likely response.

21 RL with Sequence Models and Language Models (11/13)

The videos begin here.

Previously, we saw that POMDPs act quite different from typical MDPs. Observations do not
satisfy the Markov property because they encode state information, and as such past observations
contribute information about the current state.

Moreover, they may not be as well-behaved in general:

• POMDPs can benefit from “information-gathering,” whereas in the fully observed setting
you don’t need this because you have access to the full state.

• It is possible to only have stochastic optimal policies, whereas in the fully observed setting
there always exists some optimal deterministic policy.

We consider what methods handle partial observability, where “handle” means that it can find
the optimal memoryless policy, i.e. πθ(a|o) where o is the current observation. Effectively, we are
asking whether the method invokes the Markov property, in which case we must take more care.
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Policy gradients The estimator

∇θ J(θ) ≈ 1
N

N

∑
i=1

T

∑
t=1
∇θ log πθ(ai,t|oi,t)A(oi,t, ai,t)

does not work because the advantage is a function of the state, not the observation. (The point
of a value function is that we expect to get the same value from a state regardless of what came
before.)

The estimator

∇θ J(θ) ≈ 1
N

N

∑
i=1

(
T

∑
t=1
∇θ log πθ(ai,t|oi,t)

)(
T

∑
t=1

r(oi,t, ai,t)

)
works. So does

∇θ J(θ) ≈ 1
N

N

∑
i=1

T

∑
t=1
∇θ log πθ(ai,t|oi,t)

(
T

∑
t′=t

r(oi,t′ , ai,t′)

)
,

since it only relies on the future not influencing the past, not the Markov property.

Value-based methods As mentioned previously, it is not ok to make a Q-function with observa-
tions rather than states.

Model-based methods Directly swapping states for observations doesn’t work. Consider an
example where there are two doors. Exactly one of them is unlocked, each w.p. 0.5. Then P(o′ =
pass | o = left, a = open) = 0.5 according to the model due to memorylessness, when in reality
P(o′ = pass | o = left, a = open) = 0 if you’ve tried the door already and it hasn’t opened.
Markovian models are unable to capture these dynamics.

Approach 0. On the other hand, it is possible to learn a Markovian state space. Do variational
inference with x = (o1, . . . , oT) and z = (z1, . . . , zT). Specifically, we enforce a prior z1 ∼ N (0, I),
so that pψ(z) = p(z1)∏t pψ(zt+1|zt, at). Then we learn pθ(o|z) := ∏t pθ(ot|zt) and qφ(z|o) :=
∏t qφ(zt|ot).

This method is overkill; it is not necessary to predict all of the observations, as in general, this is
probably harder to do than the actual RL problem.

Approach 1. A much simpler approach is to just use the observation history st := (o1, . . . , oT)

as states. Clearly this satisfies the Markov property, because conditioning on st tells you every-
thing about st−1.

To make this work with arbitrary-length histories, you need to use a sequence model, e.g. a RN-
N/LSTM/Transformer.

Computationally, it is expensive to sample trajectories

(s1,i, a1,i, . . . , sT,i, aT,i) = (o1:1,i, a1,i, . . . , o1:T,i, aT,i)

because the length of the vector scales with T2. The key idea is that you can use the hidden states
in the replay buffer. As of Sergey Levine’s knowledge, no one has figured out the analog for
transformers.
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Figure 23: Transformer-based LM

Figure 24: LM-RL setup

RLHF

A typical LM looks something like Figure 23. As in Section 20.1, we can regard the policy πθ(a|s)
as the process of autoregressive generation. For example, if x1:4 is the prompt and we proceed to
generate x5 and x6, this is equivalent to

πθ(a|s) = p(x5|x1:4)p(x6|x1:4, x5).

(So one timestep in the RL world can correspond to one or more timesteps in the LM world.)

With a policy gradient approach,

∇θEπθ(a|s)[r(s, a)] = Eπθ(a|s)[∇θ log πθ(a|s)r(s, a)]

≈ 1
N

N

∑
i=1
∇θ log πθ(ai|s)r(s, ai) (sample from πθ)

≈ 1
N

N

∑
i=1

πθ(ai|s)
π̄(ai|s)

∇θ log πθ(ai|s)r(s, ai) (sample from π̄)

The latter approach is generally preferred because collecting samples from an LM is expensive, so
using some π̄ saves us from running the model on every gradient step. A typical simple setup is
shown in Figure 24.

As mentioned in the previous section, the idea is to learn a reward function with a transformer
model. Since human preferences are expensive, most of the data comes from the initial super-
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vised model, and each RL update only adds a small subset of preferences. We also apply a KL-
divergence penalty to avoid over-optimization.

Multi-step RL with LMs

I got bored of this and skipped this video.

22 Transfer Learning and Meta-Learning (11/15)

The videos begin here.

Transfer Learning

Transfer learning is using experience from one set of tasks for faster learning and better perfor-
mance on a new task.

“Shot” means the number of attempts in the target domain, e.g. zero-shot means that you are
running a policy only trained in the source domain. One-shot, few-shot, and many-shot are also
common terms.

There are lots of different ideas; training something on video games to play another game and
training robots on videos to grasp objects will have very different strategies. There are, however,
several broadly applicable techniques used across domains, which we will discuss here.

Pre-training and fine-tuning is the most popular method in supervised learning. The most com-
mon issues we might face when applying it to RL are as follows:

Domain shift Representations learned in the source domain may not be useful in the target do-
main.

In computer vision, one strategy is as follows: suppose you train some algorithm that learns the
correct action given an image. (This can be either supervised or RL.) Since it’s hard to train an
RL algorithm in the real world, you train it using simulation data, where your images are a little
different from the real world: maybe cars look a little different, or the world has rain when the
simulation does not.

The assumption you can make (in this case, understandably because your two domains are quite
similar), is the invariance assumption: everything that is different between the two domains is
irrelevant. That is, if x denotes your input and y the output, then psim(x) ̸= preal(x), but there
exists some representation z = f (x) that captures everything you need to know about x: p(y|z) =
p(y|x) and psim(z) = preal(z).

We implement this using a GAN-like approach: you take some middle layers in each network
(say, after a convolution), which we call z. Then you learn a discriminator Dφ(z), which is a
binary classifier for which domain you think it came from.

Difference in the MDP Some things are possible to do in the source domain but not target.
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Figure 25: RL dynamics transfer

For example, suppose your setup is in Figure 25, i.e. your goal is to get from start to goal, but in
the real world there is a wall between them. One strategy, provided that you have done some
exploration in both environments, is to learn the dynamics and apply a reward bonus

∆r(st, at, st+1) = log ptarget(st+1|st, at)− log psource(st+1|st, at).

A better strategy is to learn two discriminators, where the equality is actually a ∝ by Bayes’ rule:

∆r(st, at, st+1) = log p(target | st, at, st+1)− log p(target | st, at)

− log p(source | st, at, st+1)+ log p(source | st, at).

Fine-tuning Now we consider the other direction: some things are possible to do in the target
domain but not the source domain. (In the previous subsection, we intuitivelly saw a way of
transferring the intersection of the two domains, rather than to the second domain.)

Thus, we need to figure out how to fine-tune. Some problems:

• In contrast to CV/NLP, downstream RL tasks are generally much less diverse. Useful fea-
tures are usually task-specific, and policies and value functions may be overly specialized.

• Optimal policies in fully-observed MDPs are deterministic. Thus, at convergence, there is a
loss of exploration, i.e. we want our original policy to be more diverse than what we would
normally get through typical RL pre-training.

One idea is that you can train with randomized physical parameters; the more varied the train-
ing domain is, the more likely we are to generalize in zero-shot to a slightly different domain.
Randomization is widely used in simulation to real-world transfer.

Multi-task learning

The idea is that if you have several similar tasks that might require similar representations (maybe
all of them are trying to grasp objects, but different object shapes/purposes), it may be beneficial
to learn all of them simultaneously rather than independently. Moreover, if you are presented
with another task at test time, it seems more likely that the representations you have learned will
generalize given multiple rather than individual tasks.

A straightforward but important idea is that multi-task RL is just single-task RL in a joint MDP. In
particular, if you are using the same robot for all environments, then you can learn a joint policy
π, which is trained exactly the same way, but you first sample an MDP from the first state p(s0).
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Equivalently, you can view this as a contextual policy π(a|s, ω), where you simply define an aug-
mented state space s̃ = [s, ω], S̃ = S×Ω.

A particularly common class of contextual policies are goal-conditioned, i.e. π(a|s, g), where g is
another state. We define r(s, a, g) = 1{d(s, g) < ε}. This setup seems exceptionally simple, and
theoretically it transfers well in zero-shot to a new task if it’s another goal. However, in practice
it is quite hard to train (for example, maybe only a few of the states are actually goals). Some
literature covers clever ways of selecting goals Kaelbling [15], representing value functions Schaul
et al. [30], or formulating rewards Andrychowicz et al. [1] and loss functions Eysenbach et al. [4].

Supervised meta-learning

Suppose you’ve learned 100 tasks already. Can you figure out how to learn other tasks more
efficiently?

Remark. This question is particularly relevant to deep RL: model-free learning requires a ton of
samples, so if we can meta-learn a faster reinforcement learner, we can learn new tasks efficiently.

As an introduction, we consider meta-learning in the supervised case; see Figure 26. Suppose we
are considering an image classification problem. You have several train/test data pairs, where
each pair consists of images from the same set of classes (for example, in the first train/test data
pair in the meta-training set, the dog and piano in the test set are also in the training data). Those
classes may differ across different pairs. Your meta-training set refers to some subset of these
datasets, and the meta-testing set is the rest. Through meta-training, the idea is that you can pass
in some new training data you’ve never seen before and produce good outputs on the test set.

Formally, in supervised learning, we accept some image x and learn an output (e.g. label) y. In
supervised meta-learning, we accept a training dataset Dtrain and test image x and learn a label y.
To read in the training set, you can use an RNN or transformer.

Framing this as an optimization problem, in “generic learning,” we minimize a loss on the training
set,

θ∗ = arg min
θ

L(Dtrain; θ).

In “generic meta-learning,” we learn fθ that accepts a training set and produces some parameters
φ that are everything you need to know about the training set. That is,

φi = fθ(Dtrain
i ) θ∗ = arg min

θ

n

∑
i=1
L(Dtest

i ; φi).

In the example where fθ is an RNN, it will produce some hidden state hi, which is passed in
as the parameters to another network parameterized by θp producing an output y from input x.
Meta-learning involves learning both the RNN and the classifier, i.e. φi = [hi, θp].

Meta–Reinforcement Learning

We use the same setup as in the previous section but rename the variables. In RL,

θ∗ = arg max
θ

Eτ∼πθ
[R(τ)].
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Figure 26: Meta-learning with supervised learning

(a) Supervised case (b) RL case

Figure 27: Meta-learning with an RNN

Equivalently, this is a function of the MDPM = {S ,A,P , r}.
In meta-RL, we learn a representation for the MDP,

φi = fθ(Mi) θ∗ = arg max
θ

n

∑
i=1

Eτ∼πφi
[R(τ)]. (4)

We assume that the meta-training MDPsMi comes from a distribution p, and at meta–test time,
we sampleMtest from the same distribution.

Another view of this setup is that running a learning procedure fθ onMi to gather the relevant
context φi is all the information you need to roughly equivalently deploy a policy that is condi-
tioned on all of the experience in the test MDP, zt = {(si, ai, ri)}t−1

i=1 . That is,

πθ(at|st, φi) ≈ πθ(at|st, zt).

This motivates us to use the same setup as before: we collect transitions {(st, at, st+1, rt)}T
t=1 (which

may or may not come from the same episode). Then we feed these through the RNN to produce
a hidden state hi, which, along with s and policy parameters θπ, is used to produce an action a.
As before, φi = [hi, θπ]. See Figure 27 to confirm for yourself that these methods are really quite
similar.

Put simply, this is equivalent to training an RNN policy. The reason why this works at all is that
the hidden state is not reset between episodes, so the network should be able to figure out more
things about the MDP from the experience it’s seen so far. The reason it learns to explore is that
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through successful meta-training, it will learn that it cannot achieve rewards by trying the same
things repeatedly, and so optimizing the total reward over the entire meta-episode with an RL
policy automatically learns to explore.

High level analysis:

• Conceptually simple.

• Easy to apply.

• Vulnerable to meta-overfitting: if the task at test-time is a bit OOD from the training tasks,
the h might not be very good.

• RNNs are hard to optimize, but transformers have worked well.

Gradient-based meta RL

We can take a step back and think about what the algorithm is actually doing. fθ(Mi) produces
some representation φi, which parameterizes the policy. We are learning θ, so equivalently we are
trying to improve the policy with our experience fromMi.

In standard RL, our objective is

θ∗ = arg max
θ

Eτ∼πθ
[R(τ)]︸ ︷︷ ︸

J(θ)

,

where we run gradient steps θ(k+1) = θ(k) + α∇θ(k) J(θ(k)). Following (4), we can define

fθ(Mi) = θ + α∇θ Ji(θ)

as the result of one gradient step.3 Now, you can take a gradient step on φi,

θ ← θ + β
n

∑
i=1
∇θ Ji(θ + α∇θ Ji(θ)).

We call this model-agnostic meta-learning (MAML) [7]. Of course, the same method works in
supervised learning.

High-level analysis:

• It is good at extrapolating, i.e. you can run more gradient steps at test-time to do better.

• Conceptually elegant.

• It is complex and requires many samples in RL.

• It does not generalize well beyond policy gradient.

Meta-RL as a POMDP

Recall that a POMDP isM = {S ,A,O,P , E , r}, where E are emission probabilities p(ot|st).

Moreover, recall that the meta-RL objective πθ(a|s, z) involves inferring z (all the information you
need to solve the current task) from context {(st, at, st+1, rt)}. If we regard this as a combined

3Of course you can also do more than one, but the math gets ugly. Higher-order derivatives are difficult in RL. In
practice, usually people just do one step, even outside of RL.
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Figure 28: An overview of topics we’ve covered

state space where S̃ = S × Z , Õ = S , s̃ = [s, z], and õ = z, we have constructed a POMDP
M =

{
S̃ ,A, Õ, P̃ , E , r

}
.

To do so, we are missing P̃ , i.e. p(zt|s1:t, a1:t, r1:t). But we can just get this via variational inference:
define a policy πθ(at|st, zt) and an inference network qφ(zt|s1, a1, r1, . . . , st, at, rt). Then we will
optimize

(θ, φ) = arg max
θ,φ

Ez∼qφ,τ∼πθ
[Ri(τ)− DKL(q(z| · · · )∥p(z))].

Finally, we sample z from the posterior, and act according to πθ(a|s, z).

High-level analysis:

• Simple, effective exploration with posterior sampling.

• Elegant reduction to POMDP.

• Vulnerable to meta-overfitting.

• Challenging to optimize in practice.

23 Challenges and Open Problems (11/20)

The videos begin here.

Challenges with core algorithms

Stability: does your algorithm converge?
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• Reinforcement learning solves a much harder objective than supervised learning. Thus, de-
vising stable RL algorithms is very hard.

• Challenge: Fitted Q/fitted value methods with deep network function estimators are not
contractions, so there are no guarantees of convergence. This makes lots of hyperparameters
required for stability: a target network, replay buffer size, clipping, learning rates. It requires
regularization: large networks, normalization, data augmentation.

• Open problem: Why do large models work so well in supervised learning? There is some
magic that makes it work, since naively we would expect catastrophic overfitting.

• Open problem: Does this same regularizing effect hold in value-based methods?

• Challenge: We learned that the gradient estimator has very high variance, and in patho-
logical examples you need exponentially more samples to counter this effect. Thus, we are
careful with batch size, learning rate, and the design of the baseline.

• Challenge: Naively, model-based RL seems straightforward because the fitting process is
supervised learning. However, due to the iterative nature of RL requiring backprop through
time, this optimization process is nontrivial; the model class and the training method end
up being very sensitive, and moreover having a better model does not guarantee a better
policy. Intuitively, while the model is trained to minimize error, not all errors in the policy
are created equal. Even worse, your policy might exploit your model, taking an action that
the model predicts is erroneously good. Naturally, a model-based method is adversarial.

Efficiency: how long does it take to converge? From least to most efficient (most to least
samples):

• Gradient-free methods (NES, CMA)

• Fully online, on-policy methods (A3C)

• Batchwise policy gradient methods (TRPO)

• Replay buffer value estimation methods (Q-learning, DDPG, NAF, SAC)

• Model-based deep RL (PETS, guided policy search)

• Model-based “shallow” RL (PILCO)

In fact, each “level” corresponds to a 10× efficiency increase in terms of samples. (The first is on
the order of 15 days; the last is on the order of a few seconds.)

Sample efficiency is important because it makes real-world learning practical. In simulation, how-
ever, they are not the whole story; training a model takes a lot of time, so if samples are fast or
easily parallelizable, you might end up using TRPO over SAC for example.

Generalization: after it converges, does it generalize? In supervised learning and generative
methods, we focus primarily on large-scale data and models, emphasizing diversity and evalu-
ated on generalization. In RL, we evaluate our models on their performance on small-scale tasks,
emphasizing mastery.
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• Challenge: In supervised learning, typically things are run once. If the model is not per-
forming up to par, you just run it for more epochs. By contrast, in deep RL, we re-run the
entire training loop multiple times until we are satisfied. This works well on Gym tasks, but
if you are working with Internet-scale data, we’ll need improvements to RL methods that
provide more suitable workflows for deep RL research.

• Challenge: In the past we’ve trained a humanoid robot to run in a straight line on a flat
infinite plane. However, really we want it to be able to accomplish several other tasks, e.g.
climbing or interacting with other objects. An idea is to use off-policy RL, where we build a
large dataset from past interaction and occasionally we get more data if we are not satisfied
with the results.

• Open problem: Last lecture, we discussed framing multi-task learning as a single task,
where you sample an MDP in your first timestep. It is compatible with existing methods.
But how can we devise solutions with lower variance or sample complexity?

Challenges with assumptions

• Is this even the right problem formulation? (e.g. maybe you don’t have a ground truth
reward function)

• What is the source of supervision? (How does the reward function look? What does a sparse
reward function mean, intuitively?)

– If you want to learn from many different tasks, you need to get those tasks somewhere.
Specifying what you want is quite hard; for example, if you ask a robot to pour a glass
of water, simply understanding whether the glass is full requires a complex perception
system.

– With the advent of LMs, it is becoming more natural to learn whether you are making
a user happy. There are lots of avenues for exploration:

* Open problem: Learning objectives and rewards from demonstrations (inverse RL)

* Open problem: Generating objectives automatically (so you can generalize to dif-
ferent tasks)

* Open problem: Leverage language and human preferences

• Rethinking the problem formulation. The basic RL problem is not set in stone; the assump-
tions vary based on the problem setting. For example, consider defining a control problem.
Some considerations are as follows:

– What is the data? (It may be very hard to simulate a real-world process.)

– What is the goal (reward, demonstration, preferences)?

– Is the supervision the same as the goal, or if not, how can we provide hints without
biasing the agent?
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Q: What is RL?

Here, we will discuss an overall view of how RL can be viewed from different perspectives.

A: An engineering tool

Suppose you are flying a rocket and want to find an optimal trajectory for it. Traditionally, you’d
write down lots of differential equations describing its physics, solve for its position over time,
linearize, and apply a feedback controller. Equivalently, you “invert the physics,” computing the
controls required to achieve a desired outcome.

A simulator gives you the forward process: you plug in some controls and see how the system
evolves over time. (Of course, implementing this is hard, but the equations are the same in either
case.) RL in that simulator lets you invert the physical system, serving as an optimization tool.

As RL methods get more sophisticated and we have a system we understand well (e.g. airplane
flight, driving a car), RL will become the go-to controller.

A: Learning in the real world

A strong motivator is Moravec’s paradox:

We are all prodigious olympians in perceptual and motor areas, so good that we make the difficult look
easy. Abstract thought, though, is a new trick, perhaps less than 100 thousand years old. We have not yet
mastered it. It is not all that intrinsically difficult; it just seems so when we do it.

Hans Moravec

In the historic games where DeepBlue and AlphaGo beat the world champions in chess and Go,
respectively, there was a human on the other side of the board, simply present for the ability to
move their bodies.

Collectively, the conclusion is quite suggestive: evolutionarily, we are all very good at perceiving
the world and moving, and it’s not really that hard to beat the world champion at chess or Go.
We’re just not very good at it.

The main lesson of thirty-five years of AI research is that the hard problems are easy and the easy problems
are hard. The mental abilities of a fouryear-old that we take for granted – recognizing a face, lifting a pencil,
walking across a room, answering a question – in fact solve some of the hardest engineering problems ever
conceived.

Steven Pinker

So the key problem is in the physical universe: we need to find good ways to learn the visual
physical properties of the world, perhaps in the same way (or some alternative) that humans do. fix this transi-

tionOpen problem: How do we engineer a system that can deal with the unexpected?
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Figure 29: Multi-task learning with a coffee example

Consider the problem of putting an RL agent on a deserted island. A human will discover solu-
tions autonomously, e.g. finding water, building a shelter. Current AI systems are very bad at this,
given that there is minimal external supervision about what to do. RL is our only hope for this,
but there is rarely research in these “hard” universes.

This raises some more specific questions:

• Open problem: How do we tell RL agents what we want them to do?

– Christiano et al. [2] introduces deep RL from preferences: for example, teaching a robot
to do a flip by asking a human which one of two demos it prefers, even though the
reward is quite hard to specify.

• Open problem: How can we learn fully autonomously? (In Atari games we get lots of
episodes, but you can only die once in real life.)

– Suppose you are training an agent to fill up a cup with coffee (in the real world). If it
fails, and the coffee spills, you’d need a human to pick up the cup and help the robot
reset. To remove the human, you can consider it a multi-task problem. See Figure 29.

• Open problem: How do we remain robust as the environment changes around us?

• Open problem: What is the right way to generalize using experience and prior data?

• Open problem: What is the right way to bootstrap exploration with prior experience?

– When you train on a new task, you can leverage previous experience that is initialized
with a behavioral prior — that is, a collection of tasks that were useful in the past, not
intended for any particular task. When you put it in a new environment, it might not
be doing your desired task, but at least it’s doing something useful.

A: Universal learning

The formula for LMs is a giant unlabeled dataset (i.e. the Internet) and a small labeled dataset
telling the model what to do.

Remark. Prompting is a bit of an art. The distribution an LM learns is quite poor, yet we are asking
it for high-quality results.
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Figure 30: Pipeline for RL on everything

Figure 31: Increasing LM interactivity for teaching

Concept 23.1. We need machine learning only to produce adaptable and complex decisions.

The idea, then, is to use RL in place of supervised methods. The data we collect from the world
tells us what could be done, rather than what should be. A limited amount of supervision would
specify which tasks an agent should learn to perform. The essence is that we are not copying the
world, as an LM does, but rather use it to understand the possibilities available to us and select
the ones that are most optimal for accomplishing particular tasks.

The issue is that, naively, this is costly because RL requires interaction with the world. However,
using methods we learned in the course, this is possible to establish:

• Take a large, diverse, possibly low-quality dataset

• Run an offline or model-based RL–like process on human-defined skills or goal-conditioned
RL or self-supervised skill discovery

• Run self-supervised learning of decision-making: learn how to make decisions that lead to
particular outcomes

• With limited supervision, learn outcomes that humans actually want

See Figure 30. ChatGPT is a version of this pipeline, but Sergey suggests using RL for the entire
process. That is, our RL should be unsupervised, then adapted to downstream tasks.

Hong et al. [13] provides an example of how this paradigm might be used, where the authors train
an agent LM that can act more interactively, as in Figure 31.

A model-based RL approach would look like the following: have a LM simulate plausible human
responses, then optimize for the kinds of responses that are useful to us. That is, we treat the entire
process as a POMDP. (In this case, instead of inverting rocket science, we are inverting an LM.)
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Takeaway 23.2. Most of our learning should come from the unsupervised or self-supervised
sort, and we need a model-based structure.
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