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Abstract. We study the fundamental group in general topological spaces and its relation-

ship to covering spaces. Great focus is placed on lifting paths and homotopies in covering

spaces and their relationship to the induced homomorphism. Our discussion concludes with

the universal cover — proving existence and uniqueness in a direct constructing and high-

lighting its utility through applications. We conclude with a discussion of the relationship

between covering spaces and the Galois correspondence.

1. Introduction

The crux of topology is to determine which spaces are topologically equivalent. The most
clear method of assessment is via explicit construction a homeomorphism, i.e. a continuous
bijection with a continuous inverse, between two given spaces. However, doing so in general is
a difficult task; throughout this paper, we explore the implications of the fundamental group:
a homeomorphism invariant that, unlike the integer Euler characteristic χ(S) and boolean
orientability for surfaces, associates topological space S with a group, denoted π1(S). In
particular, homeomorphic topological spaces have isomorphic fundamental groups, providing
an algebraic structure to topology.

We investigate the applications of the fundamental group to covering spaces, characterized
by a continuous function from the covering space C to the base space X such that each
point in X has an open neighborhood evenly covered by the map. Most of the results in this
paper are not from considering the fundamental group in isolation, but rather determining
relationships between different basepoints and covering spaces. The main thrust of this
paper — characterizing the universal cover — provides that the covering is unique up to
isomorphism for “sufficiently good” topological spaces. Aside from their deep relationship
to the fundamental group, covering spaces also play a significant role in homotopy theory,
harmonic analysis, Riemannian geometry, and differential topology.

2. Background

In this section, we introduce several basic concepts from algebraic topology that will be
used throughout this paper. In this section, we will generally skim over proofs of stated
properties; it is fairly straightforward to complete the sketches. Nevertheless, many of these
properties are interesting, and some notation may be unfamiliar or unconventional. For a
more detailed exposition, see [BBRS16].
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Figure 1. A visual representation of a homotopy between γ0 and γ1. γs is
one frame in the animation, and the specific mapping is shown by the dotted
line. [BBRS16]

Definition 2.1. A continuous path on X between two points p, q ∈ S is a continuous
mapping γ : [0, 1] → X satisfying γ(0) = p and γ(1) = q.1 We call p the starting point and
q the ending point. If p = q, we call γ a loop based at p.

As is customary, we will be a bit sloppy with notation, referring to γ as both the geometric
path and its formal definition as a function. Visually, one can interpret a path as the result
of drawing some curve on X without lifting their pen over a finite time period.

Definition 2.2. Let f, g : X → Y be continuous. We say that f and g are homotopic,
denoted f ∼ g, if there exists a continuous map H : [0, 1] × X → Y , called the homotopy,
satisfying H(0, x) ≡ f(x) and H(1, x) ≡ g(x). We say that f and g are homotopic relative
to A, denoted f ∼ g relA, if H(t, a) = f(a) = g(a) for all a ∈ A.

The high-level idea of this definition is that one may continuously deform f to g ac-
cording to H. Intuitively H serves as an animation: plotting γs : [0, 1] → Y defined by
γs(x) := H(s, x) as s varies on [0, 1] interpolates between γ0 and γ1. The explicit inter-
polation mapping γ0(x) to γ1(x) is given by γx(s) := H(s, x), with γx(0) = γ0(x) and
γx(1) = γ1(x). “Relative” serves more as convenient notation than as a meaningful concept;
in Figure 1, for instance, we can write γ0 ∼ γ1 rel {0, 1} because the paths share points p
and q at times 0 and 1 respectively.

Example 2.3. Consider the topological spaces given by X = {0} and Y = [0, 1]. We define
H : [0, 1] × X → Y by H(t, x) = tx, which is clearly continuous. Since H(0, x) ≡ 0 and
H(1, x) ≡ x, it follows that H is a homotopy mapping idX to idY where id denotes the
identity map. �

As we will see throughout this section, paths and homotopies behave nicely together.
In particular, we introduce a group structure involving paths modulo a set of homotopy
“classes.” To get here, we need to (1) define the group operator and (2) determine the
homotopy classes.

Let us begin by defining the multiplication. To do so, we will first define a multiplication
(concatenation) operator ∗ between paths, then extend it naturally to classes of paths, from
which we can accomplish both (1) and (2).

1It is common to define paths on intervals [a, b] ⊂ R rather than defining it only on [0, 1]. However, the

notion of such paths is identical; they are merely parameterized differently.
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Definition 2.4. Let γ and γ′ be paths in x satisfying γ(1) = γ′(0). Then

γ ∗ γ′(t) =

{
γ(2t) t ∈ [0, 1

2
]

γ(2t− 1) t ∈ [1
2
, 1].

Essentially, concatenating two paths means traveling on one path twice as fast as usual,
then proceeding along the other path twice as fast as usual. This is continuous if and only if
the endpoints agree, hence the γ(1) = γ′(0) condition. As we will see, this definition works
well with homotopies:

Proposition 2.5. Let γ1, γ
′
1, γ2, γ

′
2 be paths in X such that the endpoints of γi and γ′i agree.

Further assume that γ1 ∼ γ2 and γ′1 ∼ γ′2. Then γ1 ∗ γ′1 ∼ γ2 ∗ γ′2.

Proof Sketch. The idea is to concatenate the respective homotopies F mapping γ1 to γ2
and F ′ mapping γ′1 to γ′2. Specifically, we define

H(s, t) =

{
F (s, 2t) t ∈ [0, 1

2
]

F ′(s, 2t− 1) t ∈ [1
2
, 1]

From here, it is straightforward to prove that this is continuous and satisfies the needed
properties of a homotopy. �

In summary, we can use ∼ as an equivalence relation, which satisfies useful properties
under ∗:

Proposition 2.6. ∼ is an equivalence relation. In particular, ∼ gives rise to an equivalence
class [γ] of γ, which we call the homotopy class.

Proof Sketch. Proving that ∼ is reflexive and symmetric is trivial. To prove that it is
symmetric, one may draw inspiration from Definition 2.4, with concatenation taken with
respect to s rather than x. �

The previous several propositions enable us to define multiplication on homotopy classes
in the following well-defined manner:

[γ] · [γ′] = [γ ∗ γ′].

Thus, as previously alluded to, all of this comes together:

Definition 2.7. Let X be a topological space and x ∈ X. The fundamental group of X
with basepoint x is defined as

π1(X, x) = {[γ] : γ is a loop based at x} .

The first thing to note about the fundamental group is that our assertion is correct, that
it is a group under multiplication of homotopy classes.

Proof Sketch.
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• · is associative. To do this, one must construct a homotopy between γ1 ∗ (γ2 ∗γ3) and
(γ1 ∗ γ2) ∗ γ3. A reparameterization is needed, as these concatenations traverse the
γi’s at different speeds. One may explicitly define it or, in fact, show more generally
that any reparameterization (i.e. f ◦ ϕ, where varphi : [0, 1]→ [0, 1] is a continuous
map satisfying ϕ(0) = 0 and ϕ(1) = 1) preserves the homotopy class. We omit this
proof, but it is fairly straightforward.

• We claim that the identify function defined by the constant path e(t) := x works;
construct a desirable homotopy based on a suitable reparameterization.

• For the inverse, define γ̄ by traversing γ in reverse: γ̄(t) := γ(1 − t). Construct a
reparameterization to show that γ ∗ γ̄ ∼ e. �

Given this baseline, we are able to deduce useful conclusions regarding the fundamental
group. In particular, observe the following useful property on path-connected topological
spaces:

Theorem 2.8. Let X be a path-connected topological space containing x1 and x2. Then
π1(X, x1) ∼= π1(X, x2), where ∼= denotes group isomorphism.

Intuitively, fundamental groups seem to be a local property of the basepoints of their
loops. However, this theorem shows that in fact fundamental groups based at any point are
isomorphic.

Proof Sketch. Consider the path p : [0, 1]→ X starting at x1 and ending at x2 (this path
exists due to the path-connectedness requirement), and let p̄ be the reverse. Then if γ is
a loop based at x1, then p ∗ γ ∗ p̄ is a loop based at x2. Thus, it remains to show that
ϕ : π1(X, x1) → π1(X, x2) defined by ϕ([γ]) = [p ∗ γ ∗ p̄] is an isomorphism. Its inverse is
given by [p̄ ∗ γ ∗ p]; proving that it is a homomorphism is a matter of definitions. �

As a result of Theorem 2.8, we may simply refer to the fundamental group as π1(X),
since the basepoint itself is irrelevant to the group structure. The notation will be used
interchangeably throughout this paper, with π1(X, x) emphasizing x ∈ X.

It is beneficial to consider objects in relation to each other. So far, we have established a
relationship between fundamental groups within a single topological space. The more general
question arises: how are, say, π1(X) and π1(Y ) related?

Theorem 2.9. Let f : X → Y be a continuous map, and suppose f(x) = y for some
x ∈ X, y ∈ Y . Then f∗ : π1(X, x) → π1(Y, y), defined by f∗([γ]) := [f ◦ γ], is the induced
homomorphism of f .

Proof Sketch. We must show that f∗ is well-defined and that it is a homomorphism. For
the former, we must show that if γ ∼ γ′ in X, then f ◦ γ ∼ f ◦ γ′ in Y . But this is
easy: if H is a homotopy mapping γ to γ′, then f ◦ H is a homotopy mapping f ◦ γ to
f ◦ γ′. For the latter, using the definition of ∗, it is straightforward to check that indeed
(f ◦ γ) ∗ (f ◦ γ′) = f ◦ (γ ∗ γ′). �

Lastly, we introduce the notion of simple-connectedness, which we will utilize later on in
this paper.
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Figure 2. A visual representation of the covering map p, which surjective is
locally a homeomorphism, as represented by the “stack of pancakes” atop an
open set U .

Definition 2.10. A space is called simply-connected if it is path-connected and has trivial
fundamental group.

The following result explains the name. Whereas homotopies must preserve endpoints,
the changes in the basepoints explored in the previous results motivates a discussion on
topological spaces in which the endpoints of paths are ignored by homotopy classes.

Proposition 2.11. X is simply-connected if and only if there is a unique homotopy class of
paths connecting any two points in X.

Proof. For the first direction, suppose that X is simply-connected. If f and g are two paths
with identical start and end points, then f ∼ f ∗ g ∗ g ∼ g since g ∗ g and f ∗ g are loops and
are thus homotopic to the constant path.

For the other direction, note the special case that there is only one homotopy class of
paths connecting a basepoint x to itself. Thus, π1(X, x) = 0. �

3. Covering Maps

We begin by introducing relevant terminology and discuss several examples. First we
introduce the formal notion of a covering space.

Definition 3.1. Let X and X̃ be topological spaces. Suppose p : X̃ → X is continuous.
Then an open subset U of X is evenly covered if and only if p−1(U) is the disjoint union of

open sets in X̃, each of which mapping homeomorphically onto U by p. We say that p is
a covering map if it is surjective and, moreover, every point in X is contained in an open

neighborhood that is evenly covered. If p is a covering map, then we say that X̃ is a covering
space of X, the base space. See Figure 2.

The simplest example of a covering space is the trivial map, i.e. X̃ = X and p = id.
Clearly, any open subset of X is mapped onto itself homeomorphically (we don’t even have
to choose a U for each x ∈ X; anything works!). This example does not provide any useful
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Figure 3. U corresponding to θ in Example 3.3

insights, though. The following example, which is still fairly simple, uses a covering space
that is not homeomorphic to the base space.

Example 3.2. Define the unit circle S1 in R2 as usual. We may parameterize it by the
continuous, surjective map p : R→ S1,

p(t) = (cos t, sin t).

We claim that p : R→ S1 is a covering map. Consider some point x ∈ S1, and take the open
set containing x = p(T ) defined by U = S1−{−x}. Then p−1(U) consists of several disjoint
open intervals, ⋃

n∈Z

(T + (2n− 1)π, T + (2n+ 1)π) .

Each of these intervals is mapped homeomorphically onto U by p, and the claim follows. �

Let us consider the slightly more complex example involving a homotope of S1, namely
C − {0}. We can use roughly the same approach by considering the image of S1 under the
homotopy transforming it to C− {0}.

Example 3.3. Consider the punctured plane C− {0}. We claim that the p : C→ C− {0}
defined by p(z) = ez is a covering map. Note that p is surjective and continuous.

Analogously to the Example 3.2, fix some ω = Reiθ ∈ C − {0} with R > 0 and θ ∈ R.
Consider the open set containing z ∈ p−1(ω) defined by U = C−`θ, where `θ =

{
reiθ : r ≤ 0

}
is the ray beginning at the origin and pointing opposite the direction of ω (see Figure 3).
Observe that every point in U can be uniquely written in the form reiϕ with r > 0 and
ϕ ∈ (θ − π, θ + π).

This motivates us define Hα = {z ∈ C : Im(z) ∈ (α− π, α + π)}, where Im denotes the
imaginary part. Suppose a + bi ∈ p−1(U), i.e. eaebi ∈ U . Any a ∈ R is allowed, as exp is a
bijection R 7→ (0,∞). Any b 6≡ θ + π (mod 2π) is allowed by the description of U above.
Thus, it follows that

p−1(U) =
⋃
n∈Z

Hθ+2πn.

It remains to prove that U is evenly covered by p, but these observations make the task
fairly straightforward. By the definition of H, the Hθ+2πn’s are pairwise disjoint. (Compare
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this to the exposition preceding this example: if we shrink along the Re axis, we see that
this is homotopic to the union of open intervals along the real line.) Since p is continuous
on its full domain, it is also continuous over its restriction to Hα. Thus p is a covering map,
as desired. �

Example 3.4. If p : X̃ → X and q : Ỹ → Y are covering maps, then so is p× q : X̃ × Ỹ →
X × Y , given by

(p× q)(x̃, ỹ) = (p(x̃), q(ỹ)).

For any point in the product, we can take the open set defined by the product of the
corresponding open sets in X and Y . �

For reference, here follows a non-example.

Non-example 3.5. We claim that the map p : (−2π, 2π)→ S1 defined by p(t) := (cos t, sin t)
is not a covering map. Specifically, there is no open set U containing the point (1, 0)
that is evenly covered by p. If there were such a U , then choose ε sufficiently small
that Uε = {(cos t, sin t) : −ε < t < ε} ⊂ U . Then Uε must be evenly covered by p, yet
p−1(Uε) = (−2π,−2π + ε)∪ (−ε, ε)∪ (2π− ε, 2π). But neither the first nor the last interval
is mapped homeomorphically onto Uε by p, so p cannot be a covering map. �

Having discussed several examples of covering maps, we are ready to begin a more general
discussion of results. Given that the definition of continuity has the “if” and “then” clauses
reversed, the following property is somewhat surprising:

Proposition 3.6. Let p : X̃ → X be a covering map. Then p(V ) is open in X for every

open set V in X̃.

Proof. Let V ⊂ X̃ be open, and select some v ∈ V . Since p is a covering map, there exists
an open set U ⊂ X containing x = p(v). Since p−1(U) is the disjoint union of open sets,
each of which homeomorphically mapped by p onto U . At least one of these open sets must

contain v, say Ũ ; let Nx = p(V ∩ Ũ). Since p is a homeomorphism and V ∩ Ũ is open, it
follows that Nx ⊂ p(V ). In particular, by surjectivity,

p(V ) =
⋃
x

Nx

and p(V ) is therefore itself open. �

In particular, observe the following corollary:

Corollary 3.7. A bijective covering map is a homeomorphism.

Proof. Proposition 3.6 demonstrates that p−1 is open; we know by the definition of p that it
is continuous and a bijection. �

4. Lifts into Covering Spaces

Thus far, we have explored covering maps as a standalone property. Here, we consider
maps from a separate topological space to the base space and covering space and the rela-
tionships between these maps.
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Definition 4.1. Let p : X̃ → X be a covering map, let Z be a topological space, and let

f : Z → X be a continuous map. A continuous map f̃ : Z → X̃ is said to be a lift of f to

the covering space X̃ if p ◦ f̃ = f .

Visually, this definition means that the following diagram is commutative; intuitively, it
means that we can “lift” f past p.

Z X̃

X

f̃

f p

The lift has several notable topological properties, which we will discuss throughout this
paper. In particular, we prove that any lift of a covering map is uniquely determined by its
value at a single point in its domain.

Proposition 4.2. Let p : X̃ → X be a covering map, let Z be a connected topological space,

and let g, h : Z → X̃ be continuous. If p ◦ g = p ◦ h and g(z) = h(z) for some point z ∈ Z,
then g = h.

Proof. Since Z is connected, then its only clopen sets are Z and ∅ (otherwise, if ∅ ⊂ Y ⊂ Z,
then Y t (Z − Y ) partition Z into disjoint open sets). The converse is also true. We are
given that Z0 = {z ∈ Z : g(z) = h(z)} is nonempty, so proving that it is clopen would yield
Z0 = Z.

First, we define some notation. Let z ∈ Z. Let U ⊂ X be evenly covered with p(g(z)) ∈ U .

Then p−1(U) consists of the disjoint union of open sets, one of which, Ũ , contains g(z).

Likewise define V and Ṽ based on h(z). Then Nz = g−1(Ũ)∩ h−1(Ṽ ) is an open subset of Z
containing z. We split the claim into two cases:

Consider z ∈ Z0. Then g(z) = h(z) =⇒ Ũ = Ṽ , so both g and h map Nz into Ũ . Since
p|Ũ is a homeomorphism, it follows that g|Nz = h|Nz , and Nz ⊂ Z0. Thus z, which was
selected arbitrarily, has an open neighborhood; Z0 is open.

Finally, consider z /∈ Z0. Then g(z) 6= h(z) =⇒ Ũ ∩ Ṽ = ∅. Thus g(Nz) ⊂ Ũ and

h(Nz) ⊂ Ṽ yields Nz ⊂ Z − Z0; similar to the previous case, we conclude that Z − Z0 is
open, and hence Z0 is closed.

Thus Z0 is clopen, as desired. �

This fact that a lift is determined by only one point will be used several times throughout
this paper. Notably, we will apply it to continuous paths.

Yet proving uniqueness of lifts is insufficient, as we have not yet proven that they exist.
As we saw in §3, devising a meaningful lift can be challenging; we cannot generalize our
strategies from S1 and C − {0} to other topological spaces that may not be homotopic or
homeomorphic to them; even constructing those lifts was not entirely trivial. The following
theorem demonstrates that lifts necessarily exist for paths, but does not explicitly construct
the lift.
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Theorem 4.3 (Path-Lifting Theorem). Let p : X̃ → X be a covering map over a topological

space X. Let γ : [0, 1]→ X be a continuous path, and suppose ω ∈ X̃ such that p(ω) = γ(0).

Then there exists a unique continuous map γ̃ : [0, 1]→ X̃ for which γ̃(0) = ω and p ◦ γ̃ = γ.

Proof. For s ∈ [0, 1], let ηs : [0, s] → X be a continuous map such that ηs(0) = ω and
p(ηs(t)) = γ(t) for t ∈ [0, 1], assuming such a map exists. If so, write s ∈ S, and define
M = supS (i.e. the least upper bound). We claim that M = 1, in which case taking γ̃ = η1
suffices.

Since p is a covering map, there exists some evenly covered open neighborhood U of γ(M).
By continuity, we may select some open neighborhood V ⊂ [0, 1] of M such that γ(V ) ⊂ U .
Choose some element s ∈ S ∩ V , so ηs exists. Then p−1(U) is the disjoint union of open

sets, one of which containing ηs(s), say Ũ . Thus we may define the unique continuous map

q : U → Ũ such that p(q(x)) ≡ x; in particular, q(γ(s)) = ηs(s).

Given this relation, observe that the following function is continuous, where s ∈ V :

ζs =

{
ηM(t) t ∈ [0,M ]

q(γ(t)) t ∈ [M, s].

Thus s ∈ S =⇒ V ⊂ S, which can only occur if M = 1, and η1 suffices. Uniqueness follows
from Proposition 4.2. �

Moreover, we claim that homotopies also have a unique lifting. As we will see in Proposi-
tion 4.5, combining the theorems for path-lifting and homotopy-lifting yields an important
result.

Theorem 4.4 (Homotopy-Lifting Theorem). Let p : X̃ → X a covering map. Let Z be a

topological space, and let F : Z × [0, 1] → X and g : Z → X̃ be continuous maps with the

property that p◦g(z) ≡ F (z, 0). Then there exists a unique continuous map G : Z×[0, 1]→ X̃
such that G(z, 0) ≡ g(z) and p ◦G = F .

The full proof is long and tedious; we have omitted it here, but the interested reader may
see [Wil17] or [MCJ77].

Proof Sketch. Consider the path γz : [0, 1]→ Z defined by γz(t) ≡ F (z, t) for each z ∈ Z.
Then, utilize Theorem 4.3 to lift each of these γz to some γ̃z so that p ◦ γ̃z = γz. Then,

define G : [0, 1] × Z → X̃ by G(t, z) = γ̃z(t). It is straightforward to check the elementary
properties; it remains to prove that G is continuous and unique.

For continuity, we use the same idea as in Theorem 4.3. In other words, define a set Sz
for each z ∈ Z analogously to our old definition of S. The goal, as before, is to show that a
neighborhood of supSz is contained in Sz, which would give supSz = 1. It is lengthy, but
not particularly difficult, to prove using the same argument on open sets.

Uniqueness follows directly from the uniqueness of γ̃z satisfying the necessary properties.
�

As previously alluded to, we combine the last two theorems to yield the following result.
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Proposition 4.5. Let p : X̃ → X be a covering map over X, let α, β : [0, 1]→ X. Suppose

that α̃(0) = β̃(0) and α ∼ β rel {0, 1}. Then α̃ ∼ β̃ rel {0, 1}.

Note the requirement that α̃(0) = β̃(0). This additional condition is necessitated by
Proposition 4.2.

Proof. Let x0 = α(0) = β(0) and x1 = α(1) = β(1), and let F : [0, 1] × [0, 1] → x be the
homotopy between α and β satisfying F (0, t) ≡ α(t) and F (1, t) ≡ β(t). By Theorem 4.4,

there exists a G : [0, 1]× [0, 1]→ X̃ such that p ◦G = F and G(0, 0) = x̃0.

Thus it remains to check that G serves its desired function, mapping α̃ to β̃ and satisfies
therel {0, 1} condition. Since

p(G(0, t)) ≡ x0 and p(G(1, t)) ≡ x1 for all t ∈ [0, 1],

it follows from Proposition 4.2 (the lift of a constant path must be a constant path) that
G(0, t) = x̃0 and G(1, t) = x̃1 for all t ∈ [0, 1], where x̃0 = G(0, 0) = α̃(0) and x̃1 = G(1, 0) =

β̃(0).

Observe that

p(G(t, 0)) = F (t, 0) = α(t) = p(α̃(t)) and

p(G(t, 1)) = F (t, 1) = β(t) = p(β̃(t)).

Again by Proposition 4.2, since α̃ and β̃ are uniquely defined, we must have G(t, 0) = α̃(t)

and G(t, 1) = β̃(t). In particular, α̃(1) = G(1, 0) = x̃1 = G(1, 1) = β̃(1). Thus, G is the

homotopy that yields the desired condition, α̃ ∼ β̃ rel {0, 1}. �

We conclude this section with a discussion of useful results regarding the fundamental
group. The covering map provides insights into relationships between the spaces themselves.
The following two results are independent, but they both show strong similarities to the
properties of covering maps and spaces we have already discussed.

Proposition 4.6. Let p : X̃ → X be a covering map, and let x̃ ∈ X̃. Then

p∗ : π1(X̃, x̃)→ π1(X, p(x̃))

is injective.

Proof. Let [σ], [τ ] ∈ π1(X̃, x̃). Suppose p∗([σ]) = p∗([τ ]). Since p ◦ σ ∼ p ◦ τ with identical
starting and ending points and σ(0) = x̃ = τ(0), it follows from Proposition 4.5 that σ ∼ τ
with identical start and end points. Thus p∗ is injective. �

Theorem 4.7. Let p : X̃ → X be a covering map over a topological space X. If X̃ is
path-connected and X is simply connected (i.e. any two paths with the same start and end
points are homotopic), then p is a homeomorphism.

Such a statement is rather surprising — only two restrictions are needed on the involved
topological spaces to impose such a tight constraint on p. Before we prove this theorem, we
will first prove the following lemma.
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Lemma 4.8. Let p : X̃ → X be a covering map. Suppose X̃ is path-connected, and let

ω0, ω1 ∈ X̃ such that p(ω0) = p(ω1). If path α : [0, 1] → X̃ starts at ω0 and ends at ω1 and

[p ◦ α] ∈ p∗(π1(X̃)), then α is a loop, i.e. ω0 = ω1.

Proof Sketch. First, observe that if γ is a loop in X with [γ] ∈ p∗(π1(X̃)), then there exists

a loop γ̃ in X̃ such that p ◦ γ̃ = γ. As an outline of the proof, suppose that [γ] = p∗([σ]);
then γ ∼ p ◦ σ rel {0, 1}, after which point Theorem 4.3 and Proposition 4.5 do the job. We
leave it to the reader to fill in the details of the proof.

Thus, we have p ◦ β = p ◦ α for some loop β based at ω0. Since α(0) = β(0), it follows
from Proposition 4.2 that α = β as desired. �

Proof of Theorem 4.7. By Corollary 3.7, it suffices to show that p is a bijection. Since we are
given that p is a covering map and hence surjective, it remains to show that it is injective.

Suppose that ω0, ω1 ∈ X̃ satisfying p(ω0) = p(ω1). By path-connectedness, we may define a

path α : [0, 1] → X̃ starting at ω0 and ending at ω1; in particular, p ◦ α is a loop in X. By
Lemma 4.8, it follows that ω0 = ω1, so p is injective as desired. �

Having explored paths and homotopies, also important to know about the existence of
lifts of general maps. (We’ve already seen uniqueness in Proposition 4.2.) The proof of this
proof is rather long and technical, so it has been omitted. However, since this result is of
particular significance, we encourage the reader to see the full proof [HPoM02].

Theorem 4.9 (Lifting Criterion). Suppose p : (X̃, x̃0) → (X, x0) is a covering space, and
f : (Y, y0)→ (X, x0) is a map with Y path-connected and locally path-connected. Then a lift

f̃ : (Y, y0)→ (X̃, x̃0) exists if and only if f∗(π1(Y, y0)) ⊂ p∗(π1(X̃, x̃0)).

Note. In general, properties are true locally if each point has arbitrarily small neighborhoods
with that property, i.e. for every point x ∈ X and for every U ⊂ X containing x, there exists
a V ⊂ U containing x and satisfying the property. They are true semilocally if for each
x ∈ X, there exists a neighborhood U of x satisfying the property — a weaker condition.

5. Universal Cover

Thus far, we have discussed relationships involving topological spaces, the fundamental
group, and covering spaces. In this section, we will construct a covering space for a given
topological space X, called the universal cover. In particular, we provide certain constraints
such that this cover is uniquely determined based on X alone.

Definition 5.1. A topological space is called semilocally simply-connected if for each point
in x ∈ X, there exists a neighborhood U of x such that the inclusion-induced map π1(U, x)→
π1(X, x) is trivial.

We claim that the following conditions are sufficient and necessary to provide a unique
simply-connected covering space:

Theorem 5.2. Suppose X is path-connected, locally path-connected, and semilocally simply-
connected. We can directly construct a simply-connected covering space of X.
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Let us motivate the construction of X̃. Suppose p : X̃ → X is a simply-connected covering

space. By Proposition 2.11, each x̃ ∈ X̃ can be joined to x̃0 by a unique homotopy class of

paths in X starting at x0. With this in mind, we intended to define X̃ purely in terms of
X. We use the natural choice:

X̃ = {[γ] : γ is a path in X starting at x0, ending at x1} .

We define p : X̃ → X by [γ] → x1; note that x1 can be any point in X due to path-
connectedness, so p is surjective.

We aim to characterize X̃ rather than simply describing it and stating that it exists. In

particular, let us describe a topology on X̃.

Proposition 5.3. Let U be the collection of path-connected open sets U ⊂ X with the

inclusion-induced map π1(U)→ π1(X) trivial. Then U is a topology on X̃.

Proof. Given U ∈ U and a path γ in X from x0 to a point in U , let

U[γ] = {[γ · η] : η is a path in U starting at x1} .

We claim that U[γ] forms a base for a topology on X̃.

• Any path-connected open subset V ⊂ U ∈ U is alson in U , as the composition
π1(V )→ π1(U)→ π1(X) is also trivial.

• p : U[γ] → U is surjective, since different choices of η connecting x1 to a fixed x ∈ U
are all homotopic in X. Thus, U[γ] covers U .

• U[γ] = U[γ′] if [γ′] ∈ U[γ]. Suppose γ′ = γ ∗ η. Then the elements of U[γ′], of the
form [γ ∗ η ∗ µ], are contained in U[γ]. Likewise, elements of U[γ] have the form
[γ ∗ µ] = [γ ∗ η ∗ η ∗ µ] = [γ′ ∗ η ∗ µ] and are contained in U[γ′].

In particular, let us consider some γ′′ ∈ U[γ] ∩ U[γ′]. By the above, we have U[γ] =
U[γ′] = U[γ′′], so U[γ′′] meets the requirements.

The required properties are thus satisfied. �

Finally, it remains to prove that X̃ is simply connected to complete the proof of Theorem
5.2.

Proposition 5.4. X̃ is simply connected.

Proof. Fix [γ] ∈ X̃, and consider its lifting in X̃ that starts at [x0] (the homotopy class of

the constant path x0) and ends at [γ]. Hence X̃ is path-connected; to show that it has trivial
fundamental group, we can show that the image under the injection p∗ is trivial. But this is
clear: γ lifts to a loop starting at [x0], so γ is homotopic to the constant path as desired. �

Thus we have constructed our desired covering space — the universal cover. We discuss
several important results regarding the universal cover. First, we begin with construct-
ing covering spaces for arbitrary subgroups of π1(X). This property, that the constructed
covering space for X can be induced on any subgroup, is rather surprising.
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Proposition 5.5. Suppose X is path-connected, locally path-connected, and semilocally
simply-connected. Then for every subgroup H ⊂ π1(X, x0), there is a covering space given
by p : XH → X such that p∗(π1(X,x̃0)) = H for a suitable basepoint x̃0 ∈ XH .

Proof. For [γ], [γ′] in the constructed covering space X̃, define [γ] ∼ [γ′] if γ(1) = γ′(1) and
[γ ∗ γ′] = H; one may easily check that this is an equivalence relation. Let XH = H/∼. We
claim that the projection XH → X induced by [γ] 7→ γ(1) is a covering space.

Let the basepoint for x̃0 ∈ XH be [x0]; we claim that the image of the map p∗ : π1(XH , x̃0)→
π1(X, x0) is H. For a given loop γ in X based at x0, its lift to x̃ starts at [x0] and ends at
[γ]. This is a loop if and only if [γ] ∼ [x0] ⇐⇒ [γ] ∈ H. �

Finally, we answer the question: is the universal cover actually unique? In §3, we ex-
plored numerous concrete examples of direct constructions of covering spaces without even
considering the fundamental group. The following theorem answers this question subject to
the additional requirements of path-connectedness, local path-connectedness, and semilocal
simply-connectedness. As with group theory, we are interested in uniqueness up to isomor-
phism. Let us define this.

Definition 5.6. Let p1 : X̃1 → X and p2 : X̃2 → X correspond to covering spaces of X. A

homomorphism (X̃1, p1)→ (X̃2, p2) is a continuous map ϕ : X̃1 → X2 such that the following
diagram commutes:

X̃1 X̃2

X

ϕ

p1 p2

Furthermore, ϕ : (X̃1, p1)→ (X̃2, p2) is an isomorphism if there exists an inverse homomor-

phism ψ : (X̃2, p2)→ (X̃1, p1).

Thus the covering space structures are preserved. Notably, isomorphisms are actually
homeomorphisms by Corollary 3.7. The inverse of an isomorphism is an isomorphism, as is
the composition of two isomorphisms. Thus it is an equivalence relation. Now, we are ready
to state our theorem.

Theorem 5.7. Let X be path-connected, locally path-connected, and semilocally simply-
connected. Then the set of basepoint-preserving isomorphism classes of path-connected cov-

ering spaces p : (X̃, x̃0)→ (X, x0) and the set of subgroups of π1(X, x0) are bijective.

Moreover, the correspondence gives a bijection between isomorphism classes of path-connected

covering spaces p : X̃ → X and conjugacy classes of subgroups of π1(X, x0).

First we prove the following lemma, which nearly gives us the first half of the theorem.

Lemma 5.8. If X is path-connected and locally path-connected, then two path-connected

covering spaces given by p1 : X̃1 → X and p2 : X̃2 → X are isomorphic via f : X̃1 → X̃2

where x̃1 ∈ p−11 (x0) is taken to a basepoint x̃2 ∈ p−12 (x0) if and only if p1∗.

Proof Sketch. Apply Theorem 4.9 in two directions.



14 PRESTON FU

π1(X̃2, x̃2)

π1(X̃1, x̃1)

π1(X, x0)

p2∗

p1∗

ϕ

�

Proof of Theorem 5.7. The first part is obtained from Lemma 5.8 by associating the sub-

group p∗(π1(X̃, x̃0)) with the covering space (X̃, x0).

For the second part, we show that for a given p : (X̃, x̃0) → (X, x0), changing the base-

point x̃0 within p−1(x0) corresponds to changing p∗(π1(X̃, x̃0)) to a conjugate subgroup
of π1(X, x0). Specifically, choose x̃1 ∈ p−1(x0), and let γ̃ be a path from x̃0 to x̃1. Let

Hi = p∗(π1(X̃, x̃i)) for i = 0, 1. For loops f̃ at x̃0, γ̃ ∗ f̃ ∗ γ̃ is a loop at x̃1, so g−1H0g ⊂ H1.
Likewise, gH1g

−1 ⊂ H0, from which it follows that H1 = g−1H0g as desired. �

6. Conclusion

Theorems 5.5 and 5.7 bear a striking similarity to the following result from the purely
algebraic subject Galois theory, with subgroups analogous to fields. For this reason, the
correspondence discussed in its proof is frequently called the “Galois correspondence” despite
its use in geometry.

Theorem (Part of the Fundamental Theorem of Galois Theory). Let L/F be a finite Galois
extension. There is a bijection between intermediate fields K between L and F , and subgroups
of Gal(L/F ). The bijection is given by Φ : K → Gal(L/K).

The question is raised: does a larger result encapsulate both of these “intermediate”
bijections? Can problems from one theory be solved with methods from the other?
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