
MATRIX LIE GROUPS AND THE LIE GROUP–LIE ALGEBRA
CORRESPONDENCE

PRESTON FU

Abstract. We introduce Lie theory through the special case of matrix Lie groups. In
doing so, we omit the topology that is essential to a more general study of Lie theory. In
section 2, we introduce the notion of a matrix Lie group along with several basic definitions
and properties of matrices. Section 3 defines and details matrix exponentiation; in section
4, we discuss tangent spaces and the Lie bracket, and in section 5 their connections to Lie
algebras.

1. Introduction

Sophus Lie developed Lie theory, which is centered around the concept of continuous
groups — groups with a continuous operation. His original idea was to build on the work of
Klein and Poincaré, who developed discrete groups in the study of modular forms. One of
Lie’s most important discoveries was that continuous automorphism groups, or Lie groups,
were easier to work with when “linearized”; differentiating a Lie group action yields a linear
Lie algebra action. We will discuss the exponential map that relates a Lie algebra to its Lie
group, known as the Lie group-Lie algebra correspondence.

In differential geometry, differentiating a Lie group action yields a linear Lie algebra action.
Lie’s initial application of his theory was to differential equations, modeled after Galois theory
and the study of symmetry. Lie groups also play central roles in several other branches of
mathematics, including representation theory and algebraic topology. They also play a role
in non-mathematical fields: representation theory is used extensively in particle physics; Lie
groups and Lie algebras are often used in computer vision and finance.

2. General Linear Group

Here, we define several basic concepts and go through a few examples that will be used
throughout this paper.

Definition 2.1. Denote the space of all n × n matrices with entries in ring R by Mn(R).
Throughout this paper, we will only consider R = R and C.

Although Mn(R) is a ring under matrix addition and multiplication, but it has zero divi-
sors, making it less interesting. For a given non-invertible matrix A ∈Mn(R), take a vector
~v ∈ Rn with A~v = 0, and define

B =

 | |
v · · · v
| |


Then AB = 0. Let us take a look at Mn(R)’s multiplicative group, GLn(R), which turns
out to be much more interesting.
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Definition 2.2. The general linear group of degree n over a ring R, denoted GLn(R), is the
set of all n× n invertible matrices with entries in V .

Let us first check thatGLn(R) is actually a group. LetA,B ∈ GLn(R), so det(A), det(B) 6=
0. Hence det(AB) = det(A) det(B) 6= 0, and so AB ∈ GLn(R) (closure). Associativity fol-
lows from the (well-known) associativity of matrix multiplication. The identity matrix is the
identity matrix in Mn(R).Lastly,

1 = det(I) = det(A) det(A−1) =⇒ det(A−1) 6= 0 =⇒ A−1 ∈ GLn(R),

so GLn(R) is indeed a group.
Now, before we move onto the definition of a matrix Lie group, we must first introduce

the norm of a general matrix.

Definition 2.3. The Hilbert-Schmidt norm, which we will simply refer to as the norm, of a
matrix A is

‖A‖ =

√∑
i,j

a2ij.

The distance between two matrices is given by the Euclidean distance, d(A,B) = ‖A−B‖ .
If we are given a sequence of matrices (An), the sequence is said to converge to a matrix A if

lim
n→∞

d(An, A) = 0.

It is easy to see that An converges entry-wise to A — the norm is always nonnegative, and
it is 0 if and only if the matrix is 0.

Remark. Other norms, like the “taxicab norm”
∑

i,j |aij| and the “max norm” maxi,j |aij|,
also work for this notion of convergence. We will not exploit any specific properties of the
specific norms in this paper.

We now prove a few properties of the norm that will allow us to further characterize exp.

Proposition 2.4. The following are properties of ‖·‖, where A,B ∈Mn(C):

(a) λ ‖A‖ = ‖λ‖A for λ ∈ C.
(b) ‖A+B‖ ≤ ‖A‖+ ‖B‖.
(c) ‖AB‖ ≤ ‖A‖ ‖B‖.

Proof. (a) Follows from moving λ outside of the sum
∑

i,j(λaij)
2.

(b) “Reshape” A+B,A, and B like vectors under the same (`2) norm. Since the triangle
inequality holds for vectors, it holds for matrices. Likewise, (c) follows from the Cauchy-
Schwarz Inequality. �

Now that we know what convergence means, we are ready to start looking at matrix Lie
groups.

Definition 2.5. A matrix Lie group is a closed subgroup G of GLn(R). By closed, we mean
that for any sequence (An) of matrices in G converging to a matrix A, then either A ∈ G or
A /∈ GLn(R).

Remark. The idea of “closedness” is the same as in topology. In fact, our metric d allows
us to speak of topology on GLn(R). However, we will not go into topological details in this
paper.
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It is obvious that the general linear group itself is a matrix Lie group. Below, we will
investigate a few well-known matrix Lie groups.

Example 2.6. Define the orthogonal group

O(n) = {A ∈Mn(R) : AᵀA = I}

The special orthogonal group SO(n) ≤ O(n) contains only the matrices of positive deter-
minant. Geometrically, O(n) is the group of isometries of Rn that have a fixed point; its
operation is the composition of transformations, or equivalently, the multiplication of matri-
ces.

Now we can check that this is a group. Let A,B be orthogonal. Then

(AB)ᵀAB = BᵀAᵀAB = BᵀB = I =⇒ AB ∈ O(n)

(A−1)ᵀA−1 = (Aᵀ)−1A−1 = (AAᵀ)−1 = I−1 = I =⇒ A−1 ∈ O(n)

To show that it is a matrix Lie group, observe

1 = det(I) = det(AᵀA) = det(Aᵀ) det(A) = det(A)2,

so det(A) = ±1. If An → A, then det(An)→ det(A), so det(An) is eventually constant.
Notice that SO is in fact a subgroup of O, as it is closed under multiplication and inversion

and is a matrix Lie group for the same reasons as above.

We will not discuss the following example in much detail throughout the paper; however, it
is worth noting that many SU(n)’sappear frequently in both mathematics and physics. For
instance, SU(2) is isomorphic to the group of quaternions with norm 1, and it is diffeomorphic
to S3. It is often used to model electromagnetism and the weak nuclear force. SU(3) is often
used in quantum chromodynamics. See [2] for a more detailed exposition on the role of the
special unitary group in particle physics.

Example 2.7. Let A ∈ GLn(C), and define A∗ = (aji) to be the adjoint of A, where ·
denotes complex conjugation. The unitary group U(n) = {A : A∗A = I} is a subgroup of
GLn(C). Also define the subgroup SU(n) ≤ U(n) consisting of A with determinant 1, called
the special unitary group.

First we show that U(n) is indeed a subgroup of GLn(C). Let A,B ∈ U(n). Then

(AB)∗(AB) = B∗A∗AB = B∗B = I =⇒ AB ∈ U(n)

(A−1)∗(A−1) = (A∗)∗(A∗) = AA∗ = AA−1 = I =⇒ A−1 ∈ U(n)

Also notice that since

1 = det(I) = det(A∗A) = det
(
Aᵀ
)

det(A) = det(Aᵀ) det(A) = det(A) det(A) = | det(A)|2,

we must have | det(A)| = 1. Consider An, a sequence in U(n). Their determinants all lie on
the unit circle; so does the limit of their determinants. Hence A ∈ U(n), and the unitary
group is a matrix Lie group. The same can be said of SU(n).

3. Matrix Exponential

The exponential function for matrices is instrumental in the study of Lie groups. We will
see applications of this analog of the exponential function in C in future sections.
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Definition 3.1. If A ∈Mn(C), we write

eA =
∞∑
k=0

Ak

k!
.

For example,

e0 =
∞∑
k=0

0k

k!
.

All terms with k > 0 vanish, leaving only 00

0!
= I. Thus, e0 = I, as one might expect.

We will now state and prove two fundamental elementary properties of exp, which we will
use implicitly throughout this paper.

Proposition 3.2. exp is defined (i.e. the sum converges) for all A, and exp is a continuous
map.

Proof. For the first part, we have

0 ≤
∞∑
k=0

∥∥∥∥Akk!

∥∥∥∥ ≤ ∞∑
k=0

‖A‖k

k!
= e‖A‖

is a bounded sum of nonnegative reals.
For the second part, let r be a positive real number and B(r) = {A ∈Mn(R) : |A| ≤ r} .

Let Mn = r/n!. Then
∞∑
n=0

Mn =
∞∑
n=0

r

n!
= er

and ∥∥∥∥Ann!

∥∥∥∥ =
‖An‖
n!
≤ ‖A‖

n

n!
=
rn

n!

for each A ∈ B(r). Then exp(A) is continuous on B(r) by the Weierstraß M -test. For each
X ∈Mn(R), there exists an r such that X ∈ B(r), hence exp is continuous on Mn(R). �

Now we will discuss several important properties of the exponential function. The following
proposition allows us to efficiently deal with exponentiated conjugates.

Proposition 3.3. If A ∈Mn(C), B ∈ GLn(C), then

eBAB
−1

= BeAB−1.

Proof. It is well-known that

(BAB−1)n = BAB−1BAB−1 · · ·BAB−1 = BAA · · ·AB−1 = BAnB−1,

from which we can substitute to obtain the desired result:

eBAB
−1

=
∞∑
n=0

(BAB−1)n

n!
=
∞∑
n=0

BAnB−1

n!
= B

(
∞∑
n=0

An

n!

)
B−1 = BeAB−1. �
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The proposition works particularly well in the case of diagonalizable matrices. If the
eigenvectors v1, v2, . . . , vn (with corresponding eigenvalues λ1, λ2, . . . , λn) of A are linearly
independent, define

C =

 | | |
v1 v2 · · · vn
| | |

 , D =

λ1 0
. . .

0 λn


Thus, A = CDC−1, and thus

eA = CeDC−1 = C

e
λ1 0

. . .

0 eλn

C−1.

The following related theorem allows us to compute the determinant of the exponential
(although not the exponential itself) very efficiently.

Theorem 3.4. For A ∈Mn(C), det(eA) = eTr(A).

Proof. Apply Jordan’s Theorem. Set A = PQP−1, where Q is upper triangular. Then

An = (PQP−1)n = PQnP−1.

Thus,

det(eA) = det

[
∞∑
i=0

PQiP−1

i!

]

= det

[
P

(
∞∑
i=0

Qi

i!

)
P−1

]
= det(P ) det(eQ) det(P−1)

= det(eQ).

However, since

Tr(Q) = Tr(PQP−1) = Tr(A),

it remains to show that det(eQ) = eTr(Q).
To do so, observe that Qj is upper triangular with (Qj)ii = (Qii)

j. It follows that eQ is
upper triangular with (eQ)ii = eQii . Since the determinant of an upper triangular matrix is
the product of the entries on its diagonal, we have:

det(eQ) =
n∏
i=1

eQii = e
∑n

i=1Qii = eTr(Q),

as desired. �

We also enumerate a few important properties of the exponential function:

Theorem 3.5. Let A,B ∈Mn(C) that commute, i.e. AB = BA. Then:

eA+B = eAeB = eBeA.

As a corollary, eA is invertible and
(
eA
)−1

= e−A.
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Proof. Expand:

eAeB =
∞∑
i=0

∞∑
j=0

Ai

i!
· B

j

j!
(1)

=
∞∑
s=0

s∑
i=0

Ai

i!
· Bs−i

(s− i)!
(2)

=
∞∑
s=0

1

s!

s∑
i=0

(
s

i

)
AiBs−i(3)

=
∞∑
s=0

(A+B)s

s!
(4)

= eA+B,(5)

where (2) represents first summing over s = i + j then iterating over 0 ≤ i ≤ s and (4)
utilizes the commutativity of A,B and the Binomial Theorem.

As for the corollary, substituting B = −A gives

eAe−A = eA−A = I,

as desired. �

Since Theorem 3.5 only holds when the matrices commute, it may be helpful to find a more
general way of finding eA+B. The following theorem does so, but its formal proof is beyond
the scope of this paper. We provide a brief sketch; see [1] for details on the enumerated
facts. Theorem 6.5 gives another method of generalization.

Theorem 3.6 (Lie Product Formula). For all A,B ∈Mn(C), we have

eA+B = lim
p→∞

(
eA/peB/p

)p
.

Proof Sketch. Define the matrix logarithm on Mn(C) the same way as the logarithm is
defined on C,

logA =
∞∑
i=1

(−1)i+1 (A− I)i

i
.

We state without proof the following properties of the logarithm:

(1) When ‖A− I‖ < 1, this converges and elogA = A.
(2) For all A ∈Mn(C) with ‖A‖ < 1

2
,

log(A+ I) = A+O(‖A‖2).
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Thus, as p→∞, eA/peB/p approaches I · I = I, and hence it is in the domain of log.

log(eA/peB/p) = log

(
1 +

A

p
+
B

p
+O

(
1

p2

))
=
A

p
+
B

p
+O

(
1

p2

)
eA/peB/p = exp

(
A

p
+
B

p
+O

(
1

p2

))
(
eA/peB/p

)p
= exp

(
A+B +O

(
1

p

))
,

from which the desired result follows when we take p→∞. �

The matrix exponential satisfies yet another very useful property: since we have dedicated
quite some attention to multiplication, inverses, and determinants, let us now turn our
attention to differentiation. Before we do so, let us first define a path.

Definition 3.7. A path in G is a map γ : R → G that sends a variable t to a matrix
A(t) = (aij). In a smooth path, each entry is differentiable in t, in which case we write
A′(t) = (a′ij).

Proposition 3.8. Let A ∈Mn(C). Then etA is smooth, and

d

dt
etA = AetA.

Notably, the derivative at 0 is A.

Proof. Since power series are differentiable within their radius of convergence, we may dif-
ferentiate etA term-by-term.

d

dt

(
∞∑
k=0

Aktk

k!

)
=
∞∑
k=0

d

dt

(
Aktk

k!

)

=
∞∑
k=0

Aktk−1

(k − 1)!

= A

∞∑
k=0

Aktk

k!

= AetA. �

4. Tangent Spaces

We begin with a definition.

Definition 4.1. Let G be a matrix Lie group. A matrix X is in the tangent space at the
identity, denoted T (G), if and only if there exists a smooth path γ in Mn(C) satisfying
γ(0) = I and X = γ′(0).

Tangent spaces are vector spaces. To see this, we must show that it is closed under addition
and satisfies the standard condition for scalar multiplication.
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For addition, suppose that A,B are paths in G and A′(0), B′(0) ∈ T (G). Consider the
path AB. A(0)B(0) = II = I, and its derivative at 0 is

A′(0)I + IB′(0) = A′(0) +B′(0).

For scalar multiplication, take the path A with A′(0) ∈ T (G). Now consider the path
A(λt). This also passes through (0, I), and its derivative at 0 is

λA′(λ · 0) = λA′(0).

The importance of the exponential function is that it maps T (G) to G for a matrix group
G. A simple “almost-example” of this is the unit circle in C. The tangent space at the
identity can be found to be 1 + iθ; the exponential function is e · eiθ is a circle centered at 0
with radius e, which is isomorphic to the unit circle.

Now, let us investigate a more generalizable example: T (SO(n)).

Definition 4.2. A matrix A ∈Mn(R) is skew-symmetric if A+ Aᵀ = 0. Thus, A has zeros
along its diagonal, and aij = −aji. We denote the set of skew-symmetric matrices as so(n).

Proposition 4.3. Let A ∈ so(n). Then f(t) = etA ∈ SO(n).

Proof. We are given that Aᵀ = −A. Therefore,

AAᵀ = A(−A) = (−A)A = AᵀA.

By Theorem 3.5,

eA(eA)ᵀ = eAeA
ᵀ

= e0 = I =⇒ exp(A) ∈ O(n).

The same holds for tA in place of A, so f(t) ∈ O(n).
Now, note that | det(f(t))| = 1. At t = 0, det(e0) = det(I) = 1, so by continuity,

det(f(t)) = 1. The result follows. �

Proposition 4.4. T (SO(n)) = so(n).

Proof. First, we show that T (SO(n)) ⊆ so(n). Let X ∈ T (SO(n)), so there is a path γ with
γ(0) = I and γ′(0) = X. Note that since γ is a path through SO(n), for all t ∈ R, we have

(γ(t))ᵀ(γ(t)) = I.

Differentiating, Differentiating,

(γ(t))ᵀ(γ′(t)) + (γ′(t))ᵀ(γ(t)) = 0.

Substituting t = 0, we obtain

γ′(0) + γ′(0)ᵀ = 0,

and thus X = γ′(0) ∈ so(n).
Now, we prove the other direction, T (SO(n)) ⊇ so(n). Consider a matrix X ∈ so(n).

Define a path γ(t) := etX (in SO(n) by Proposition 4.3). Then:

d

dt
etX = XetX ;

substituting t = 0 yields γ′(0) = X as desired. �
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5. Lie Algebras

In the previous section, we showed that the tangent space of SO(n) is precisely the skew-
symmetric n× n matrices, so(n). In this section, we will demonstrate how this connects to
the larger study of Lie theory.

Definition 5.1. A Lie algebra is a vector space g equipped with a bivariate bracket operator
[·, ·] : g× g→ g that is (for all A,B,C ∈ g and constant λ):

(1) bilinear, i.e.

[A+B,C] = [A,C] + [B,C] [λA,B] = λ[A,B]

[A,B + C] = [A,B] + [A,C] [A, λB] = λ[A,B],

(2) anticommutative, i.e. [A,B] = −[B,A],
(3) and satisfies the Jacobi identity, i.e.

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.

Perhaps the simplest example of a Lie algebra is the vector space R3 equipped with the
cross product × as its bivariate operation. The first two properties of the cross product are
well known; the last follows from Lagrange’s formula on triple products,∑

cyc

A× (B × C) =
∑
cyc

B(A · C)− C(A ·B) = 0.

For our purposes, however, the following choice of [·, ·] is most convenient:

Definition 5.2. Let G be a matrix Lie group. Then for any A,B ∈ T (G), the Lie bracket
is

[A,B] = AB −BA.

Bilinearity and anticommutativity are obvious. As for the Jacobi identity, observe that∑
cyc

[A, [B,C]] =
∑
cyc

A[B,C]− [B,C]A

=
∑
cyc

A(BC − CB)− (BC − CB)A

=
∑
cyc

ABC − ACB −BCA+ CBA.

It is not hard to check that each of the 6 permutations appears twice — once positively
and once negatively, and hence they total 0. Thus, this selection of a bracket is a “valid”
Lie bracket. (Note that choices that we might expect to work, like matrix addition and
multiplication, fail to satisfy the Jacobi identity.)

We remark that if G is abelian, then [A,B] = [B,A] = 0 for any input. For this reason,
our “almost-example” with the unit circle in Section 4 fails to generalize to non-abelian
groups.

Recall that in the last section, we proved that T (G) is a vector space. It turns out that we
can apply what we’ve said about the Lie bracket to T (G), thus connecting each Lie group
with a corresponding Lie algebra. To do so, we show that T (G) is closed under the Lie
bracket.

Proposition 5.3. Let A,B ∈ T (G). Then [A,B] ∈ T (G).
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Proof. Define γ(t) = etABe−tA. The derivative is, by Proposition 3.8,

etA(Be−tA)′ + (etA)′(Be−tA) = etA(−BAe−tA) + AetA(Be−tA),

which is AB −BA at 0. Thus, by the closure of T (G),

AB −BA = lim
h→0

etABe−tA −B
h

is a member of T (G), as desired. �

With this in mind, we are now ready to correspond Lie groups and Lie algebras; this
definition should be obvious based on our results for SO(n) and so(n).

Definition 5.4. Denote the Lie algebra of a Lie group G by g; it is T (G) equipped with the
Lie bracket as its bilinear operator.

6. Lie Group and Lie Algebra Homomorphisms

Now that we have a solid understanding of the notion of Lie algebras, we are able to mean-
ingfully discuss Lie group and Lie algebra homomorphisms. In this paper, we only consider
continuous homomorphisms (it turns out to be quite difficult to construct discontinuous
ones).

Theorem 6.1. Let G and H be matrix Lie groups. Suppose Φ : G→ H is a homomorphism,
then there is a homomorphism ϕ : g→ h with

Φ(eA) = eϕ(A).

Proof. The following proof can be found in [1]. Select Z such that

(6) Φ(etA) = etZ

for all t ∈ R. We claim that ϕ(A) := Z is a homomorphism. It is clear that ϕ(tA) = tϕ(A).
By the Lie product formula and the continuity of Φ, we have

etϕ(A+B) = Φ(et(A+B))

= Φ

(
lim
p→∞

(
etA/petB/p

)p)
= lim

p→∞

(
Φ(etA/p)Φ(etB/p)

)p
= lim

p→∞

(
etϕ(A)/petϕ(B)/p

)p
= et(ϕ(A)+ϕ(B)),

and differentiating at 0 yields ϕ(A+B) = ϕ(A) + ϕ(B) by Proposition 3.8. �

Definition 6.2. A Lie subalgebra is a subspace h of g that is closed under the Lie bracket.
A subalgebra h of g is an ideal if

A ∈ g, B ∈ h =⇒ [A,B] ∈ h.

Note that there are subalgebras that are not ideals:
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Example 6.3. Consider the Lie algebra of diagonal 2 × 2 matrices d(2) ⊂ gl(2). Their
bracket is [(

a b
c d

)
,

(
x 0
0 y

)]
=

(
a b
c d

)(
x 0
0 y

)
−
(
x 0
0 y

)(
a b
c d

)
=

(
ax by
cx dy

)
−
(
ax bx
cy dy

)
=

(
0 b(y − x)

c(x− y) 0

)
,

which is of course not diagonal. However, it is easy to see that the bracket of two diagonal
matrices is also diagonal, as in this case we would have b = c = 0. Thus d(2) is a subalgebra,
but not an ideal.

Proposition 6.4. If H is a normal subgroup of G, then h is an ideal in g.

Proof. In our proof of Proposition 5.3, we saw that

[A,B] =
d

dt
etABe−tA

∣∣∣∣
t=0

Since H CG, we have etABe−tA ∈ H, and hence the result follows. �

Now, we saw in Theorem 3.5 that eA+B = eAeB where A and B commute. Suppose that we
instead try to solve eAeB = eC for C in the case that A and B do not necessarily commute.
Then C = log(eAeB); expansion shows that

C =
∞∑
k=1

(−1)k−1

k

[(
∞∑
i=0

Ai

i!

)(
∞∑
j=0

Bj

j!

)
− 1

]k

=
∞∑
k=1

(−1)k−1

k

(∑
i+j≥1

AiBj

i!j!

)k

=
∞∑
k=1

(−1)k−1

k

∑
i`+j`≥1∀`∈[k]

Ai1Bj1 · · ·Ai`Bj`

i1!j1! · · · i`!j`!
.

A more general result, known as Dynkin’s Formula, can be found by taking the derivative
of the exponential function, manipulating it, and integrating. We omit the details of its
proof. For simplicity, we will denote by adA the linear transformation mapping B 7→ [A,B].
Thus, (adA)2(B) = [A, [A,B]].

Theorem 6.5 (Dynkin’s Formula).

C =
∞∑
k=1

(−1)k−1

k

∑
∀1≤`≤k,`+j`≥1

((adA)i1(adB)j1 · · · (adA)ik(adB)jk) (I)

(i1 + j1 + · · ·+ ik + jk)(i1!j1! · · · ik!jk!)
.

The first few terms are well-known and are given by

C = A+B +
1

2
[A,B] +

1

12
([A, [A,B]] + [B, [B,A]])− 1

24
[B, [A, [A,B]]] + · · ·
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Note that When A,B commute, all of the terms involving brackets vanish, and we are left
with only the A+B term. Thus, the statement agrees with Theorem 3.5.

Also note that the sum in Dynkin’s Formula shows that C may be expressed in terms of
nested Lie brackets with rational coefficients. We conclude by stating the Baker–Campbell-
Hausdorff formula, whose proof is beyond the scope of the paper. See Chapter 5 of [1] for
more details.

Theorem 6.6 (BCH). Define

g(Z) :=
Z logZ

Z − 1
= 1−

∞∑
n=1

(1− Z)n

n(n+ 1)

wherever it is defined. Then:

log(eAeB) = A+

(∫ 1

0

g
(
eadAet adB

)
dt

)
(B),

where the integrand is a linear operator on Mn(C).
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